
Adaptive Flow Control

1

Introduction

Guarantees reliable delivery of data.

Ensures data delivered in order.

Enforces flow control between sender and receiver.

The idea is the sender does not overrun the

218-Sep-13

The idea is the sender does not overrun the

receiver’s buffer

DLL Sliding Window

3

DLL Sliding Window

18-Sep-13

Sliding Window Revisited

Sender Window

Receiver Window

The sender and receiver slides its window

418-Sep-13

Sender Window

SeqNum � Sender assigns sequence number to
each frame which grows infinitely

SWS �Sender Window Size, The size of sender
window. ie The number of unacked frames the

5

window. ie The number of unacked frames the

sender can transmit.(outstanding frames)

LAR � Seqnum of the Last Ack Received

LFS � Seqnum of the Last Frame Sent

18-Sep-13

Sender Window

Sender Maintains LFS – LAR ≤ SWS

Ack � LAR to right (sliding)

A timer is associated with each frame

The sender buffers SWS no. of frames.

6

The sender buffers SWS no. of frames.

18-Sep-13

Receiver Window

RWS � Receiver Window Size, The size of
receiver window. ie The number of frames the

receiver willing to accept.(out-of-order frames)

LAF �Seqnum of the Largest Acceptable Frame

7

LAF �Seqnum of the Largest Acceptable Frame

LFR �Seqnum of the Last Frame Received

18-Sep-13

Receiver Window

Receiver Maintains LAF − LFR ≤ RWS

SeqNum ≤ LFR or SeqNum > LAF

frame is outside the receiver’s window, discard it

SeqNum within the window and arrived in out of order �
buffer the received frame and send a NAK to the sender for

8

buffer the received frame and send a NAK to the sender for
the expected frame.

SeqNum within the window and arrived in order � slide the
window

LFR < SeqNum ≤ LAF �frame within the receiver’s window
and it is accepted.

18-Sep-13

Sender & Receiver Window

918-Sep-13

Relationship between send buffer (a) and receive buffer (b).

TCP Sliding Window

10

TCP Sliding Window

Window Size

The big difference is the size of the sliding window

Size at the receiver is not fixed.

The receiver advertises an adjustable window size

(Advertised Window field in TCP header).

1118-Sep-13

(Advertised Window field in TCP header).

Sender is limited to having no more than

Advertised Window size of unACKed data at any

time.

TCP Flow Control

The discussion is similar to the previous sliding

window mechanism except we add the complexity

of sending and receiving application processes that are

filling and emptying their local buffers.

1218-Sep-13

Also introduce complexity that buffers are of finite

size, but not worried about where the buffers are

stored.

MaxSendBuffer

MaxRcvBuffer

Receiver Window

LastByteRead

NextByteExpected

LastByteReceived

1318-Sep-13

Receiver Window

1418-Sep-13

Receiver Window

Receiver throttles sender by advertising a window
size no larger than the amount it can buffer.

On TCP receiver side:

1518-Sep-13

On TCP receiver side:

LastByteRcvd - LastByteRead <= MaxRcvBuffer

to avoid buffer overflow!

Receiver Window

TCP receiver advertises:

AdvertisedWindow = MaxRcvBuffer -

(LastByteRcvd - LastByteRead)

1618-Sep-13

(LastByteRcvd - LastByteRead)

i.e., the amount of free space available in the
receive buffer.

Sender Window

LastByteAcked

LastByteSent

LastByteWritten

1718-Sep-13

Sender Window

1818-Sep-13

Sender Window

TCP sender must adhere to
AdvertisedWindow from the receiver such
that

LastByteSent – LastByteAcked

1918-Sep-13

LastByteSent – LastByteAcked

<= AdvertisedWindow

or use EffectiveWindow:

EffectiveWindow = AdvertisedWindow –

(LastByteSent – LastByteAcked)

Sender Window

• Flow Control Rules

1. EffectiveWindow > 0 for sender to send more data

2. LastByteWritten – LastByteAcked

<=MaxSendBuffer

2018-Sep-13

<=MaxSendBuffer

Send buffer is full!!

TCP sender must block sender application.

TCP Congestion Window

CongestionWindow �a variable held by source for
each connection.

TCP is modified such that the maximum number of

bytes of unacknowledged data allowed is the minimum

2118-Sep-13

bytes of unacknowledged data allowed is the minimum

of CongestionWindow and Advertised Window.

Maximum Window (Max number of bytes

unacknowledged data) � min (CongestionWindow ,
AdvertisedWindow)

TCP Congestion Window

And finally, we have:

EffectiveWindow = MaxWindow – (LastByteSent –

LastByteAcked)

2218-Sep-13

The TCP source receives implicit and/or
explicit indications of congestion by which to
reduce the size of CongestionWindow.

Additive Increase is a reaction to perceived available

capacity.

Linear Increase � For each “cwnd’s worth” of packets
sent, increase cwnd by 1 packet.

Additive Increase

2318-Sep-13

sent, increase cwnd by 1 packet.

In practice, cwnd is incremented exponentially for each

arriving ACK.

Source Destination

Additive Increase

2418-Sep-13

Maximum Segment Size

MSS= sizeof(MTU) -

2518-Sep-13

IP
header

TCP header
MSS= sizeof(MTU) -

sizeof(IP header) –
sizeof(TCP header)

Silly Window Syndrome

If a server with this problem is unable to process all
incoming data, it requests that its clients reduce the amount
of data they send at a time.

MSS/2

If the server continues to be unable to process all incoming
data, the window becomes smaller and smaller, sometimes

2618-Sep-13

data, the window becomes smaller and smaller, sometimes
to the point that the data transmitted is smaller than the
packet header, making data transmission extremely
inefficient.

The name of this problem is due to the window size
shrinking to a "silly" value.

27Unit IV Beulah A.18-Sep-13

Nagle's algorithm

Consider An application repeatedly emits data in small

chunks, frequently only 1 byte in size. Since TCP packets

have a 40 byte header (20 bytes for TCP, 20 bytes for IPv4),

This results in a 41 byte packet for 1 byte of useful

information, a huge overhead.

2818-Sep-13

information, a huge overhead.

This situation often occurs in Telnet sessions, where most

key presses generate a single byte of data which is

transmitted immediately.

Worse, over slow links, many such packets can be in transit

at the same time, potentially leading to congestion collapse.

Nagle's Algorithm

If there is data to send but the window is open less than

MSS, then wait some amount of time before sending the

available data

But how long to wait?

If waiting for too long, then interactive applications like

29

If waiting for too long, then interactive applications like

Telnet are being hurt

If don’t wait long enough, then the risk is sending a bunch

of tiny packets and falling into the silly window syndrome

The solution is to introduce a timer and to transmit when the timer
expires

18-Sep-13

Nagle's Algorithm

Use a clock-based timer, for example one that fires every

100 ms

Nagle introduced an elegant self-clocking solution

Key Idea

As long as TCP has any data in send, the sender will eventually

30

As long as TCP has any data in send, the sender will eventually
receive an ACK

This ACK can be treated like a timer firing, triggering the
transmission of more data

18-Sep-13

Nagle's algorithm

if there is new data to send

if the window size >= MSS and available data is >= MSS send complete
MSS segment now

Else

if

3118-Sep-13

if

if there is unACKed data in flight

buffer the new data until an ACK arrives

else

send data immediately

end if

end if

end if

Adaptive Retransmission

32

Adaptive Retransmission

18-Sep-13

Introduction

TCP achieves reliability by retransmitting segments

after a Timeout

Choosing the value of the Timeout

33

Choosing the value of the Timeout

Set time out as a function as RTT

If too small, retransmit unnecessarily

If too large, poor throughput

Make this adaptive, to respond to changing congestion
delays in Internet

18-Sep-13

Keep a running average of RTT and compute

TimeOut as a function of this RTT.

Send packet and keep timestamp ts .

When ACK arrives, record timestamp ta .

Original Algorithm

3418-Sep-13

When ACK arrives, record timestamp ta .

SampleRTT = ta - ts
Original

Transmission

ACK

Sample RTT

Original Algorithm

Compute a weighted average:

EstimatedRTT = α x EstimatedRTT +

(1- α) x SampleRTT

35

(1- α) x SampleRTT

Original TCP spec: αα in range (0.8,0.9)in range (0.8,0.9)

TimeOut = 2 x EstimatedRTT

18-Sep-13

Original Algorithm

Flaw in the original algorithm

ACK does not really acknowledge a transmission

• It actually acknowledges the receipt of data

When a segment is retransmitted and then an ACK

36

arrives at the sender

• It is impossible to decide if this ACK should be associated

with the first or the second transmission for calculating

RTTs

18-Sep-13

Original Algorithm

3718-Sep-13

Associating the ACK with (a) original transmission versus (b)

retransmission

Karn/Partridge Algorithm

1. Do not measure SampleRTT when sending packet

more than once.

2. For each retransmission, set TimeOut to double the

last TimeOut.

38

last TimeOut.

{ Note – this is a form of exponential backoff

based on the believe that the lost packet is due to

congestion.}

18-Sep-13

Jacobson/Karels Algorithm

The problem with the original algorithm is that it

did not take into account the variance of

SampleRTT.

39

Difference = SampleRTT – EstimatedRTT

EstimatedRTT = EstimatedRTT + (δ x Difference)

Deviation = δ (|Difference| - Deviation)

where δδ is a fraction between 0 and 1.

18-Sep-13

Jacobson/Karels Algorithm

TCP computes timeout using both the mean and

variance of RTT

TimeOut = µ x EstimatedRTT

40

+ Φ x Deviation

where based on experience µ = 1 and Φ = 4.

18-Sep-13

