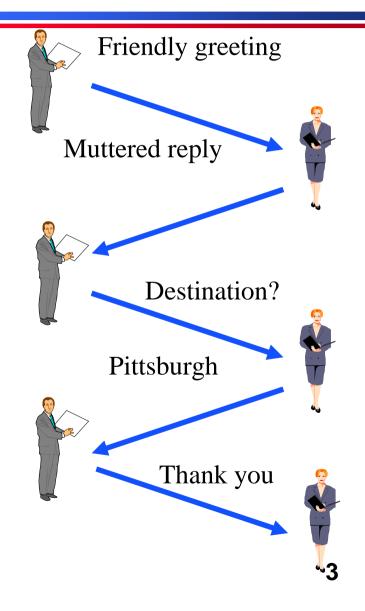
Today's Lecture

- Last time: "Big picture"
- Today:
 - » General architectural principles for networks
 - » Introduces a few concrete models & examples

• Today's specifics:


- » What is a protocol.
- » Protocol stacks.
- » Some history.
- » Standards organizations.
- » Application layer.

Protocols

- Recall goals:
 - » Interoperability
 - » Reuse
 - » Hiding underlying details

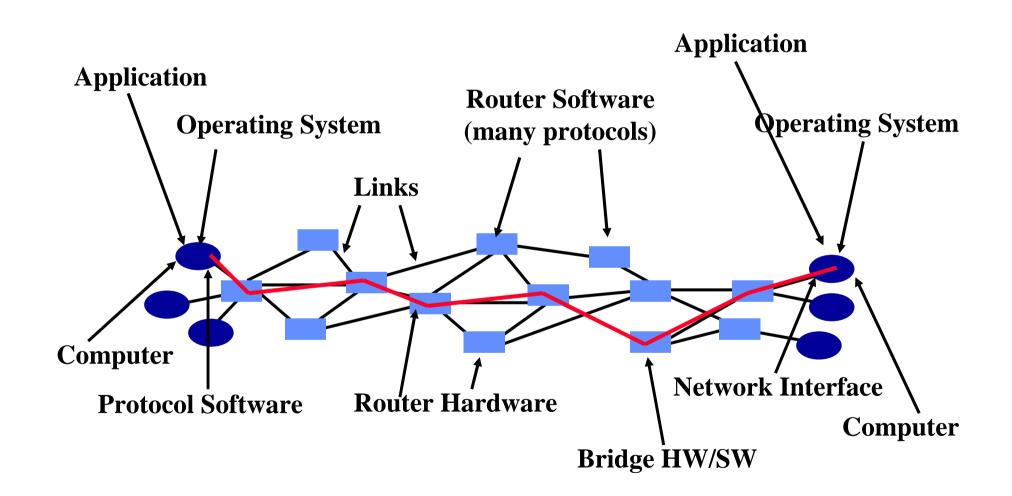
Protocols

- An agreement between parties on who communication should take place.
- Protocols may have to define many aspects of the communication.
- Syntax:
 - » Data encoding, language, etc.
- Semantics:
 - » Error handling, termination, ordering of requests, etc.
- Protocols at hardware, software, *all* levels!
- Example: Buying airline ticket by typing.
- Syntax: English, ascii, lines delimited by "\n"

More on Protocols

• Protocols are the key to interoperability.

» Networks are very heterogenous:


Computer: x86	Hardware
Ethernet: 3com	Hardware/link
Routers: cisco, etc.	Network
App: Email	Application

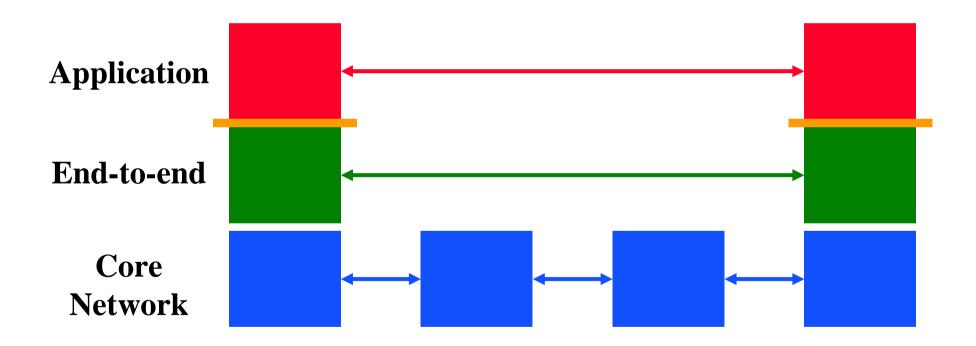
- » The hardware/software of communicating parties are often not built by the same vendor
- » Yet they can communicate because they use the same protocol
- Protocols exist at many levels.
 - » Application level protocols, e.g. access to mail, distribution of bboards, web access, ..
 - » Protocols at the hardware level allow two boxes to communicate over a link, e.g. the Ethernet protocol

Interfaces

- Each protocol offers an interface to its users, and expects one from the layers on which it builds
 - » Syntax and semantics strike again
 - Data formats
 - Interface characteristics, e.g. IP service model
- Protocols build upon each other
 - » Add value
 - E.g., a reliable protocol running on top of IP
 - » Reuse
 - E.g., OS provides TCP, so apps don't have to rewrite

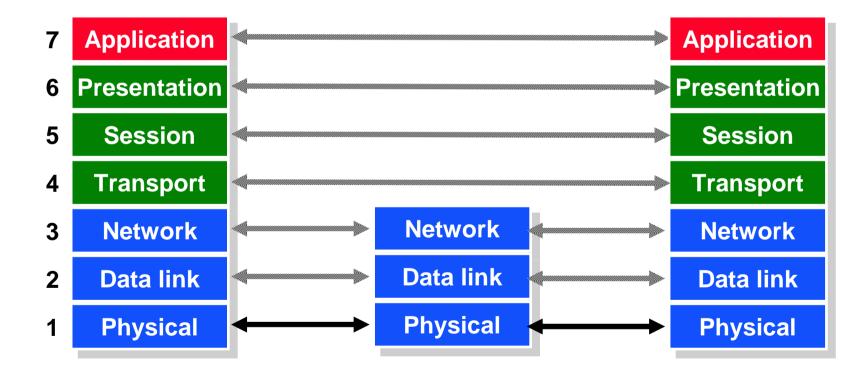
Too Many Network Components

Too many components 2


- Links: copper, fiber, air, carrier pidgeon
- Running ethernet, token ring, SONET, FDDI
- Routers speaking BGP, OSPF, RIP, ...
- Hosts running FreeBSD, Linux, Windows, MacOS, …
- People using Mozilla, Explorer, Opera, ...
- Protocols hide this stuff with simple abstractions.

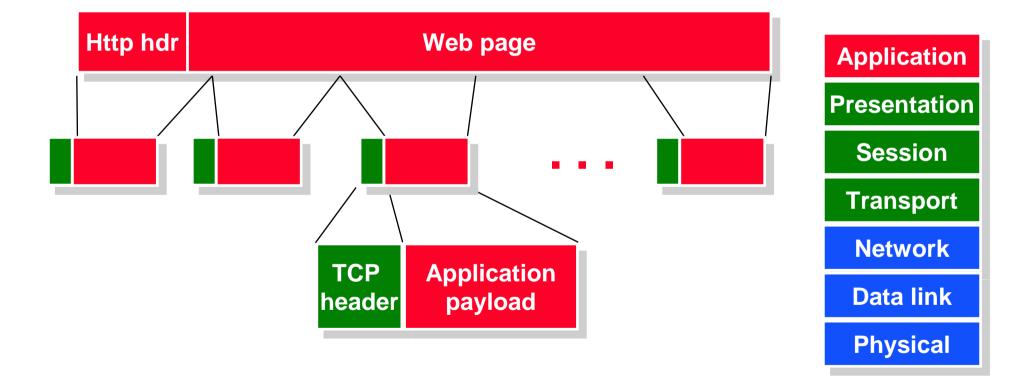
Looking at protocols

- Hop by hop / link protocols
 - » Ethernet
- End-to-end protocols
 - » TCP, apps, etc.
- Management / "control plane" protocols
 - » Routing, etc.
 - Can be either link or e2e themselves
 - Definition somewhat vague.
- Standards
 - » File formats, etc.
 - E.g., JPEG, MPEG, MP3, ...


Categories not solid / religious, just a way to view things.

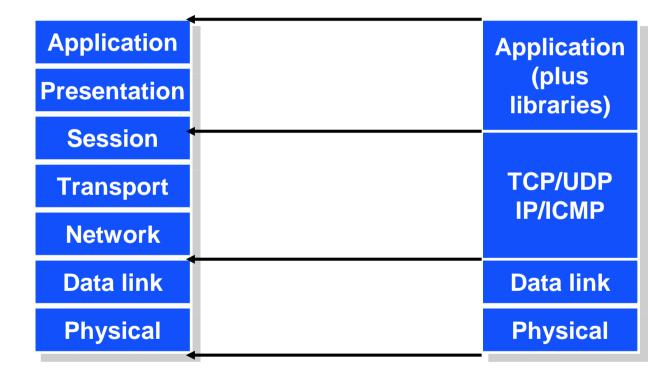
Protocol and Service Levels

A Layered Network Model

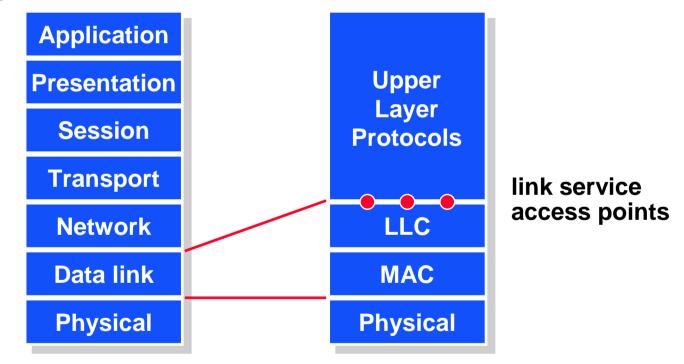

The Open Systems Interconnection (OSI) Model.

OSI Motivation

- Standard way of breaking up a system in a set of components, but the components are organized as a set of layers.
 - » Only horizontal and vertical communication
 - » Components/layers can be implemented and modified in isolation
- Each layer offers a service to the higher layer, using the services of the lower layer.
- "Peer" layers on different systems communicate via a protocol.
 - » higher level protocols (e.g. TCP/IP, Appletalk) can run on multiple lower layers
 - » multiple higher level protocols can share a single physical network
- "It's only a model!" TCP/IP has been crazy successful, and it's not based on a rigid OSI model. But the OSI model has been very successful at shaping thought.


Example: Sending a Web Page

Limitations of the Layered Model


- Some layers are not always cleanly separated.
 - » Inter-layer dependencies in implementations for performance reasons
 - » Some dependencies in the standards (header checksums)
- Higher layers not always well defined.
 - » Session, presentation, application layers
- Lower layers have "sublayers".
 - » Usually very well defined (e.g., SONET protocol)
- Interfaces are not really standardized.
 - It would be hard to mix and match layers from independent implementations, e.g., windows network apps on unix (w/out compatability library)
 - » Many cross-layer assumptions, e.g. buffer management

The TCP/IP Model

Local Area Network Protocols

IEEE 802 standards "refine" the OSI data link layer.

Standardization

• Key to network interoperability.

A priori standards.

- » Standards are defined first by a standards committee
- » Risk of defining standards that are untested or unnecessary
- » Standard may be available before there is serious use of the technology

De facto standards.

- » Standards is based on an existing systems
- » Gives the company that developed the base system a big advantage
- » Often results in competing "standards" before the official standard is established

Relevant Standardization Bodies

- ITU-TS Telecommunications Sector of the International Telecommunications Union.
 - » government representatives (PTTs/State Department)
 - » responsible for international "recommendations"
- T1 telecom committee reporting to American National Standards Institute.
 - » T1/ANSI formulate US positions
 - » interpret/adapt ITU standards for US use, represents US in ISO
- IEEE Institute of Electrical and Electronics Engineers.
 - » responsible for many physical layer and datalink layer standards
- ISO International Standards Organization.
 - » covers a broad area