

IPv4 Classful Addressing

- 32 bit address
- How many do we get?
- ¹/₂ are class A
- ¹/₄ are class B
- 1/8 are class C
- Rest are D & E

Wastage using classes rigidly

Class A Allocations

- $2^{32} = 4\ 294\ 967\ 296$
- $\frac{1}{2}$ of these are class A = 2 147 483 648
- Class A only given to big organisations
 - Governments etc
- Each class A has (2²⁴-2) hosts = 16 777 216
- A lot of hosts!!

Class B Allocations

- $2^{16} = 65536$ hosts per class B
- 1 073 741 824 addresses in total
- 16 384 different class B addresses
- 128.0.0.0 to 191.255.255.255
- Given to large companies

Class C Allocations

- 536 870 912 host addresses in all
- $2^8 2 = 254$ hosts per class C address
- 192.0.0.0 to 223.255.255.255
- 2 097 152 class C addresses available
- Not large enough for big company, too many for small company.

- A technique that addresses two scaling concerns in the Internet
 - The growth of backbone routing table as more and more network numbers need to be stored in them
 - Potential exhaustion of the 32-bit address space
- Address assignment efficiency
 - Arises because of the IP address structure with class A, B, and C addresses
 - Forces us to hand out network address space in fixed-size chunks of three very different sizes
 - A network with two hosts needs a class C address
 - Address assignment efficiency = 2/255 = 0.78
 - A network with 256 hosts needs a class B address
 - Address assignment efficiency = 256/65535 = 0.39

- Exhaustion of IP address space centers on exhaustion of the class B network numbers
- Solution
 - Say "NO" to any Autonomous System (AS) that requests a class B address unless they can show a need for something close to 64K addresses
 - Instead give them an appropriate number of class C addresses
- What is the problem with this solution?

- Problem with this solution
 - Excessive storage requirement at the routers.
- If a single AS has, say 16 class C network numbers assigned to it, (4000 addresses)
 - Every Internet backbone router needs 16 entries in its routing tables for that AS
 - This is true, even if the path to every one of these networks is the same
- If we had assigned a class B address to the AS
 - The same routing information can be stored in one entry
 - Efficiency = $16 \times 255 / 65, 536 = 6.2\%$

- CIDR tries to balance the desire to minimize the number of routes that a router needs to know against the need to hand out addresses efficiently.
- CIDR uses aggregate routes
 - Uses a single entry in the forwarding table to tell the router how to reach a lot of different networks
 - Breaks the rigid boundaries between address classes

- Consider an AS with 16 class C network numbers.
- Instead of handing out 16 addresses at random, hand out a block of contiguous class C addresses (4000 addresses)
- Suppose we assign the class C network numbers from 192.4.16 through 192.4.31
- Observe that top 20 bits of all the addresses in this range are the same (11000000 00000100 0001)
 - We have created a 20-bit network number (which is in between class B network number and class C number)
- Requires to hand out blocks of class C addresses that share a common prefix

- Requires to hand out blocks of class C addresses that share a common prefix
- The convention is to place a /X after the prefix where X is the prefix length in bits
- For example, the 20-bit prefix for all the networks 192.4.16 through 192.4.31 is represented as 192.4.16/20
- 11000000 00000100 0001 0000 00000000
 Divided as network hosts

First Address & Last Address

- In IPv4 addressing, a block of addresses can be defined as x.y.z.t /n in which x.y.z.t defines one of the addresses and the /n defines the mask.
- The first address in the block can be found by setting the rightmost 32 n bits to 0s.
- The last address in the block can be found by setting the rightmost 32 n bits to 1s.

Example

- 192.4.16/20
- 11000000 00000100 0001 0000 00000000

Network address

• 11000000 00000100 0001 1111 1111111

Broadcast address

Example

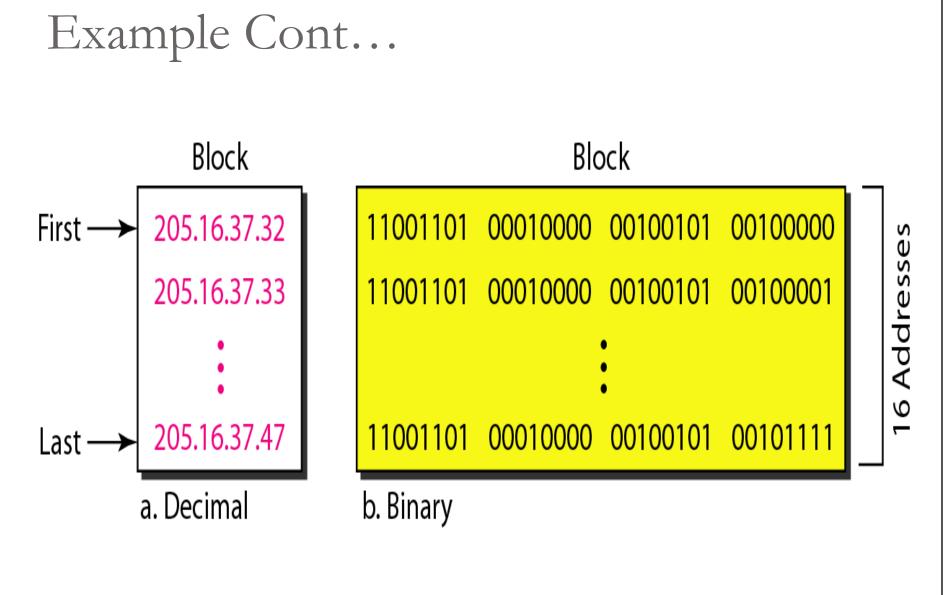
- A block of addresses is granted to a small organization.
- We know that one of the addresses is 205.16.37.39/28. What is the first address in the block?

Example

- A block of addresses is granted to a small organization.
- We know that one of the addresses is 205.16.37.39/28. What is the first address in the block?
- The binary representation of the given address is 11001101 00010000 00100101 00100111
- What is the value of n?
- If we set 32-28 rightmost bits to 0, we get 11001101 00010000 00100101 00100000 or 205.16.37.32 → First Address

Example Cont...

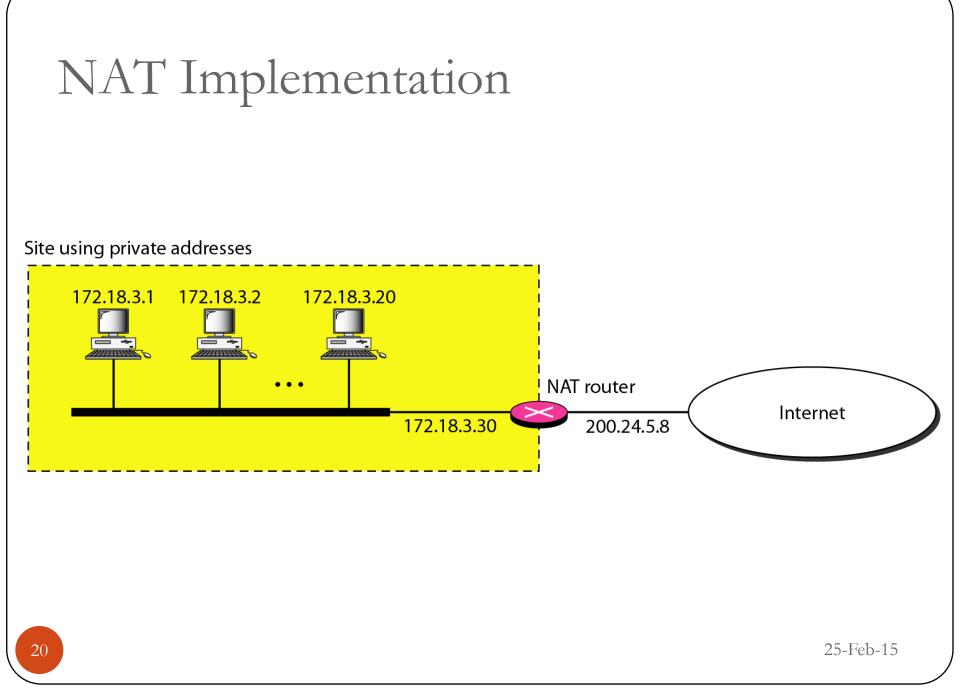
• Find the last address for the previous example

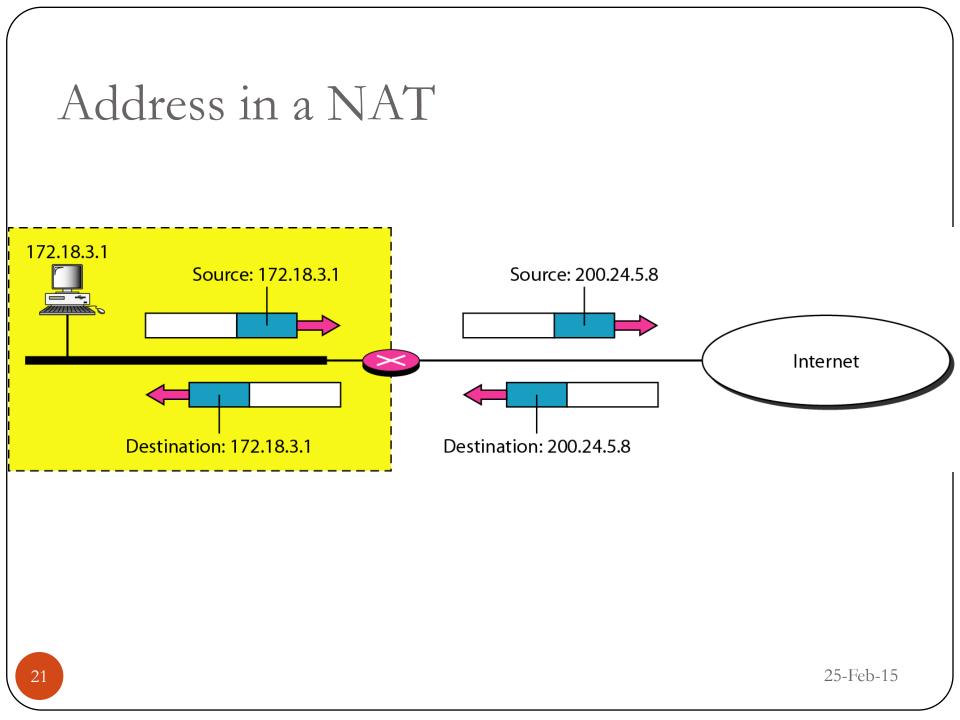

Example Cont...

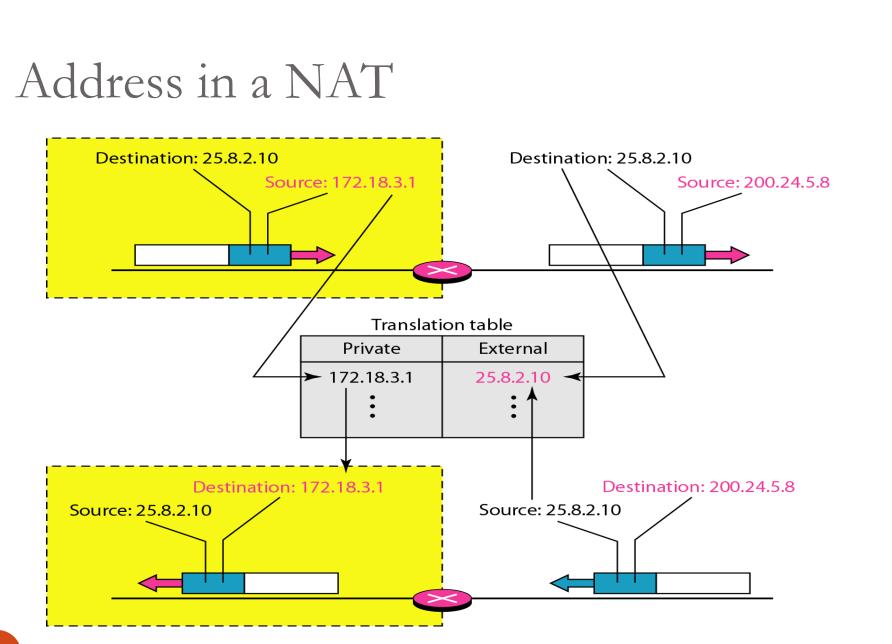
- Find the last address for the previous example
- The binary representation of the given address is 11001101 00010000 00100101 00100111
 If we set 32 28 rightmost bits to 1, we get

11001101 00010000 00100101 00101111

or


205.16.37.47 \rightarrow Last Address




25-Feb-15

Network Address Translation

Range			Total
10.0.0.0	to	10.255.255.255	2 ²⁴
172.16.0.0	to	172.31.255.255	2^{20}
192.168.0.0	to	192.168.255.255	2 ¹⁶

