IEEE 802.11 Wireless LAN

- Wireless links transmit electromagnetic signals
 - Radio, microwave, infrared
- Wireless links all share the same "wire" (so to speak)
 - The challenge is to share it efficiently without unduly interfering with each other
 - Most of this sharing is accomplished by dividing the "wire" along the dimensions of frequency and space
- Exclusive use of a particular frequency in a particular geographic area may be allocated to an individual entity such as a corporation.

- These allocations are determined by government agencies such as FCC (Federal Communications Commission) in USA
- Specific bands (frequency) ranges are allocated to certain uses.
 - Some bands are reserved for government use
 - Other bands are reserved for uses such as AM radio, FM radio, televisions, satellite communications, and cell phones
 - Specific frequencies within these bands are then allocated to individual organizations for use within certain geographical areas.
 - Finally, there are several frequency bands set aside for "license exempt" usage
 - Bands in which a license is not needed

- Devices that use license-exempt frequencies are still subject to certain restrictions
 - The first is a limit on transmission power
 - This limits the range of signal, making it less likely to interfere with another signal
 - For example, a cordless phone might have a range of about 100 feet.

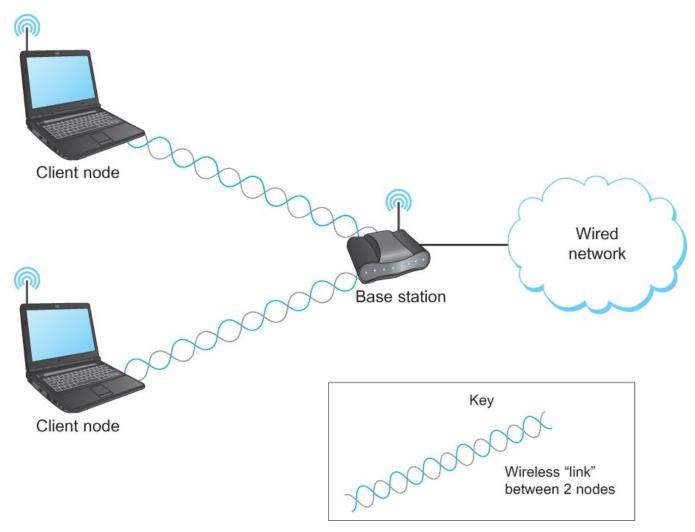

The second restriction requires the use of Spread Spectrum technique

- Idea is to spread the signal over a wider frequency band
 - So as to minimize the impact of interference from other devices
 - Originally designed for military use

Frequency hopping

- Transmitting signal over a random sequence of frequencies
 - First transmitting at one frequency, then a second, then a third...
 - The sequence of frequencies is not truly random, instead computed algorithmically by a pseudorandom number generator
 - The receiver uses the same algorithm as the sender, initializes it with the same seed, and is
 - Able to hop frequencies in sync with the transmitter to correctly receive the frame

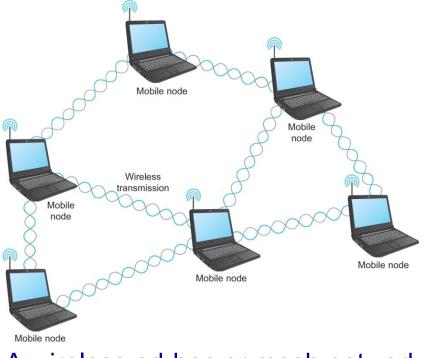
- A second spread spectrum technique called *Direct* sequence
 - Represents each bit in the frame by multiple bits in the transmitted signal.
 - For each bit the sender wants to transmit
 - It actually sends the exclusive OR of that bit and *n* random bits
 - The sequence of random bits is generated by a pseudorandom number generator known to both the sender and the receiver.
 - The transmitted values, known as an *n*-bit chipping code, spread the signal across a frequency band that is *n* times wider


Example 4-bit chipping sequence

- Wireless technologies differ in a variety of dimensions
 - How much bandwidth they provide
 - How far apart the communication nodes can be
- Four prominent wireless technologies
 - Bluetooth
 - Wi-Fi (more formally known as 802.11)
 - WiMAX (802.16)
 - 3G cellular wireless

	Bluetooth (802.15.1)	Wi-Fi (802.11)	3G Cellular	
Typical link length	10 m	100 m	Tens of kilometers	
Typical data rate	2 Mbps (shared)	54 Mbps (shared)	Hundreds of kbps (per connection)	
Typical use	Link a peripheral to a computer	Link a computer to a wired base	Link a mobile phone to a wired tower	
Wired technology analogy	USB	Ethernet	DSL	

Overview of leading wireless technologies

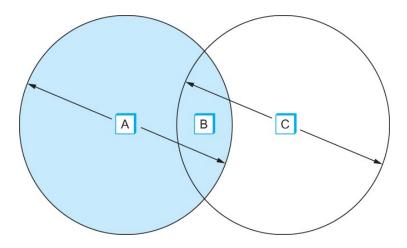

- Mostly widely used wireless links today are usually asymmetric
 - Two end-points are usually different kinds of nodes
 - One end-point usually has no mobility, but has wired connection to the Internet (known as base station)
 - The node at the other end of the link is often mobile

A wireless network using a base station

- Wireless communication supports point-to-multipoint communication
- Communication between non-base (client) nodes is routed via the base station
- Three levels of mobility for clients
 - No mobility: the receiver must be in a fix location to receive a directional transmission from the base station (initial version of WiMAX)
 - Mobility is within the range of a base (Bluetooth)
 - Mobility between bases (Cell phones and Wi-Fi)

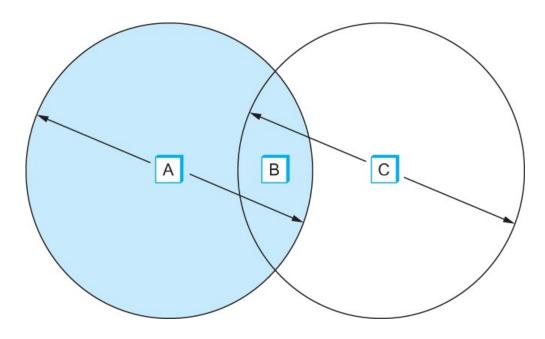
- Mesh or Ad-hoc network
 - Nodes are peers
 - Messages may be forwarded via a chain of peer nodes

A wireless ad-hoc or mesh network

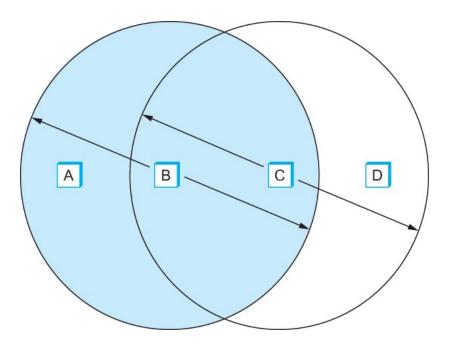

IEEE 802.11

- Also known as Wi-Fi
- Like its Ethernet and token ring siblings, 802.11 is designed for use in a limited geographical area (homes, office buildings, campuses)
 - Primary challenge is to mediate access to a shared communication medium – in this case, signals propagating through space
- 802.11 supports additional features
 - power management and
 - security mechanisms

IEEE 802.11


- Original 802.11 standard defined two radio-based physical layer standard
 - One using the frequency hopping
 - Over 79 1-MHz-wide frequency bandwidths
 - Second using direct sequence
 - Using 11-bit chipping sequence
 - Both standards run in the 2.4-GHz and provide up to 2 Mbps
- Then physical layer standard 802.11b was added
 - Using a variant of direct sequence 802.11b provides up to 11 Mbps
 - Uses license-exempt 2.4-GHz band
- Then came 802.11a which delivers up to 54 Mbps using OFDM
 - 802.11a runs on license-exempt 5-GHz band
- Most recent standard is 802.11g which is backward compatible with 802.11b
 - Uses 2.4 GHz band, OFDM and delivers up to 54 Mbps

- Consider the situation in the following figure where each of four nodes is able to send and receive signals that reach just the nodes to its immediate left and right
 - For example, B can exchange frames with A and C, but it cannot reach D
 - C can reach B and D but not A


Example of a wireless network

- Suppose both A and C want to communicate with B and so they each send it a frame.
 - A and C are unaware of each other since their signals do not carry that far
 - These two frames collide with each other at B
 - But unlike an Ethernet, neither A nor C is aware of this collision
 - A and C are said to *hidden nodes* with respect to each other

The "Hidden Node" Problem. Although A and C are hidden from each other, their signals can collide at B. (B's reach is not shown.)

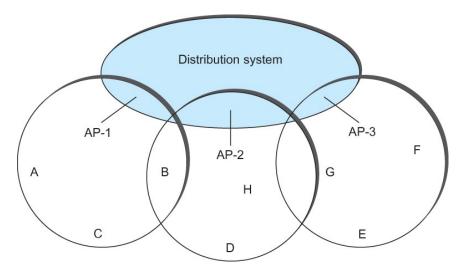
- Another problem called exposed node problem occurs
 - Suppose B is sending to A. Node C is aware of this communication because it hears B's transmission.
 - It would be a mistake for C to conclude that it cannot transmit to anyone just because it can hear B's transmission.
 - Suppose C wants to transmit to node D.
 - This is not a problem since C's transmission to D will not interfere with A's ability to receive from B.

Exposed Node Problem. Although B and C are exposed to each other's signals, there is no interference if B transmits to A while C transmits to D. (A and D's reaches are not shown.)

- 802.11 addresses these two problems with an algorithm called Multiple Access with Collision Avoidance (MACA).
- Key Idea
 - Sender and receiver exchange control frames with each other before the sender actually transmits any data.
 - This exchange informs all nearby nodes that a transmission is about to begin
 - Sender transmits a Request to Send (RTS) frame to the receiver.
 - The RTS frame includes a field that indicates how long the sender wants to hold the medium
 - Length of the data frame to be transmitted
 - Receiver replies with a Clear to Send (CTS) frame
 - This frame echoes this length field back to the sender

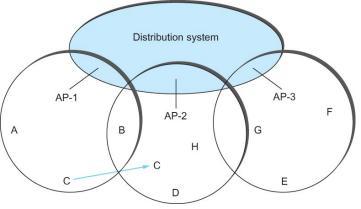
- Any node that sees the CTS frame knows that
 - it is close to the receiver, therefore
 - cannot transmit for the period of time it takes to send a frame of the specified length
- Any node that sees the RTS frame but not the CTS frame
 - is not close enough to the receiver to interfere with it, and
 - so is free to transmit

- Using ACK in MACA
 - Proposed in MACAW: MACA for Wireless LANs
- Receiver sends an ACK to the sender after successfully receiving a frame
- All nodes must wait for this ACK before trying to transmit
- If two or more nodes detect an idle link and try to transmit an RTS frame at the same time
 - Their RTS frame will collide with each other
- 802.11 does not support collision detection
 - So the senders realize the collision has happened when they do not receive the CTS frame after a period of time
 - In this case, they each wait a random amount of time before trying again.
 - The amount of time a given node delays is defined by the same exponential backoff algorithm used on the Ethernet.

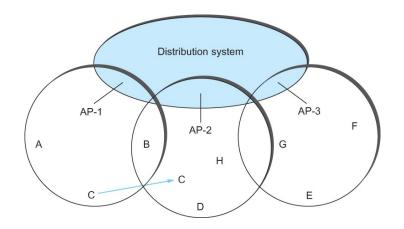

- 802.11 is suitable for an ad-hoc configuration of nodes that may or may not be able to communicate with all other nodes.
- Nodes are free to move around
- The set of directly reachable nodes may change over time
- To deal with this mobility and partial connectivity,
 - 802.11 defines additional structures on a set of nodes
 - Instead of all nodes being created equal,
 - some nodes are allowed to roam
 - some are connected to a wired network infrastructure
 - they are called *Access Points* (AP) and they are connected to each other by a so-called *distribution system*

- Following figure illustrates a distribution system that connects three access points, each of which services the nodes in the same region
- Each of these regions is analogous to a cell in a cellular phone system with the APIs playing the same role as a base station
- The distribution network runs at layer 2 of the ISO architecture

Access points connected to a distribution network


- Although two nodes can communicate directly with each other if they are within reach of each other, the idea behind this configuration is
 - Each nodes associates itself with one access point
 - For node A to communicate with node E, A first sends a frame to its AP-1 which forwards the frame across the distribution system to AP-3, which finally transmits the frame to E

Access points connected to a distribution network


- How do the nodes select their access points
- How does it work when nodes move from one cell to another
- The technique for selecting an AP is called *scanning*
 - The node sends a *Probe* frame
 - All APs within reach reply with a *Probe Response* frame
 - The node selects one of the access points and sends that AP an Association Request frame
 - The AP replies with an Association Response frame
- A node engages this protocol whenever
 - it joins the network, as well as
 - when it becomes unhappy with its current AP
 - This might happen, for example, because the signal from its current AP has weakened due to the node moving away from it
 - Whenever a node acquires a new AP, the new AP notifies the old AP of the change via the distribution system

- Consider the situation shown in the following figure when node C moves from the cell serviced by AP-1 to the cell serviced by AP-2.
- As it moves, it sends *Probe* frames, which eventually result in *Probe Responses* from AP-2.
- At some point, C prefers AP-2 over AP-1, and so it associates itself with that access point.
 - This is called *active scanning* since the node is actively searching for an access point

Node Mobility

- APs also periodically send a *Beacon* frame that advertises the capabilities of the access point; these include the transmission rate supported by the AP
 - This is called passive scanning
 - A node can change to this AP based on the *Beacon* frame simply by sending it an *Association Request* frame back to the access point.

Node Mobility

IEEE 802.11 – Frame Format

- Source and Destinations addresses: each 48 bits
- Data: up to 2312 bytes
- CRC: 32 bit
- Control field: 16 bits
 - Contains three subfields (of interest)
 - 6 bit Type field: indicates whether the frame is an RTS or CTS frame or being used by the scanning algorithm
 - A pair of 1 bit fields : called **ToDS** and **FromDS**

16	16	48	48	48	16	48	0–18,496	32	
Control	Duration	Addr1	Addr2	Addr3	SeqCtrl	Addr4	Payload	CRC	

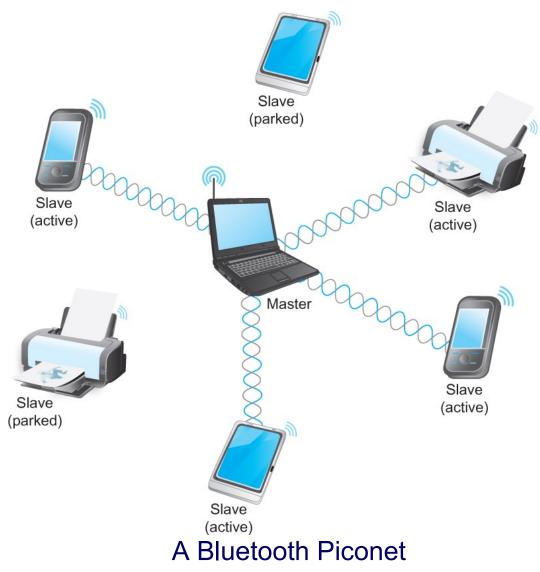
Frame Format

IEEE 802.11 – Frame Format

- Frame contains four addresses
- How these addresses are interpreted depends on the settings of the ToDS and FromDS bits in the frame's Control field
- This is to account for the possibility that the frame had to be forwarded across the distribution system which would mean that,
 - the original sender is not necessarily the same as the most recent transmitting node
- Same is true for the destination address
- Simplest case
 - When one node is sending directly to another, both the DS bits are 0, Addr1 identifies the target node, and Addr2 identifies the source node

IEEE 802.11 – Frame Format

- Most complex case
 - Both DS bits are set to 1
 - Indicates that the message went from a wireless node onto the distribution system, and then from the distribution system to another wireless node
 - With both bits set,
 - Addr1 identifies the ultimate destination,
 - Addr2 identifies the immediate sender (the one that forwarded the frame from the distribution system to the ultimate destination)
 - Addr3 identifies the intermediate destination (the one that accepted the frame from a wireless node and forwarded across the distribution system)
 - Addr4 identifies the original source
- Addr1: E, Addr2: AP-3, Addr3: AP-1, Addr4: A


Bluetooth

- Used for very short range communication between mobile phones, PDAs, notebook computers and other personal or peripheral devices
- Operates in the license-exempt band at 2.45 GHz
- Has a range of only 10 m
- Communication devices typically belong to one individual or group
 - Sometimes categorized as Personal Area Network (PAN)
- Version 2.0 provides speeds up to 2.1 Mbps
- Power consumption is low

Bluetooth

- Bluetooth is specified by an industry consortium called the Bluetooth Special Interest Group
- It specifies an entire suite of protocols, going beyond the link layer to define application protocols, which it calls *profiles*, for a range of applications
 - There is a profile for synchronizing a PDA with personal computer
 - Another profile gives a mobile computer access to a wired LAN
- The basic Bluetooth network configuration is called a piconet
 - Consists of a master device and up to seven slave devices
 - Any communication is between the master and a slave
 - The slaves do not communicate directly with each other
 - A slave can be *parked*: set to an inactive, low-power state

Bluetooth

ZigBee

- ZigBee is a new technology that competes with Bluetooth
- Devised by the ZigBee alliance and standardized as IEEE 802.15.4
- It is designed for situations where the bandwidth requirements are low and power consumption must be very low to give very long battery life
- It is also intended to be simpler and cheaper than Bluetooth, making it financially feasible to incorporate in cheaper devices such as a wall switch that wirelessly communicates with a ceiling-mounted fan