
1

Chapter 1

Foundation

Computer Networks: A Systems Approach, 5e
Larry L. Peterson and Bruce S. Davie

Copyright © 2010, Elsevier Inc. All rights Reserved

2

C
h
a
p
te

r 1

Problems

 How to build a scalable network that will support
different applications?

 What is a computer network?

 How is a computer network different from other
types of networks?

 What is a computer network architecture?

3

C
h
a
p
te

r 1

Chapter Outline

 Applications

 Requirements

 Network Architecture

 Implementing Network Software

 Performance

4

C
h
a
p
te

r 1

Chapter Goal

 Exploring the requirements that different
applications and different communities place on
the computer network

 Introducing the idea of network architecture

 Introducing some key elements in implementing
Network Software

 Define key metrics that will be used to evaluate
the performance of computer network

5

C
h
a
p
te

r 1

Applications

 Most people know about the Internet (a
computer network) through applications

 World Wide Web

 Email

 Online Social Network

 Streaming Audio Video

 File Sharing

 Instant Messaging

 …

6

C
h
a
p
te

r 1

7

C
h
a
p
te

r 1

Application Protocol

 URL
 Uniform resource locater

 http://www.cs.princeton.edu/~llp/index.html

 HTTP
 Hyper Text Transfer Protocol

 TCP
 Transmission Control Protocol

 17 messages for one URL request
 6 to find the IP (Internet Protocol) address

 3 for connection establishment of TCP

 4 for HTTP request and acknowledgement
 Request: I got your request and I will send the data

 Reply: Here is the data you requested; I got the data

 4 messages for tearing down TCP connection

8

C
h
a
p
te

r 1

Requirements

 Application Programmer

 List the services that his application needs: delay

bounded delivery of data

 Network Designer

 Design a cost-effective network with sharable

resources

 Network Provider

 List the characteristics of a system that is easy to

manage

9

C
h
a
p
te

r 1

Connectivity
 Need to understand the

following terminologies
 Scale

 Link

 Nodes

 Point-to-point

 Multiple access

 Switched Network
 Circuit Switched

 Packet Switched

 Packet, message

 Store-and-forward

(a) Point-to-point

(b) Multiple access

10

C
h
a
p
te

r 1

Connectivity
 Terminologies (contd.)

 Cloud

 Hosts

 Switches

 internetwork

 Router/gateway

 Host-to-host connectivity

 Address

 Routing

 Unicast/broadcast/multicast

(a) A switched network

(b) Interconnection of networks

(a)

(b)

11

C
h
a
p
te

r 1

Cost-Effective Resource Sharing
 Resource: links and

nodes

 How to share a link?

 Multiplexing

 De-multiplexing

 Synchronous Time-division

Multiplexing

 Time slots/data

transmitted in

predetermined slots
Multiplexing multiple logical flows

over a single physical link

12

C
h
a
p
te

r 1

Cost-Effective Resource Sharing
 FDM: Frequency Division

Multiplexing

 Statistical Multiplexing
 Data is transmitted based

on demand of each flow.

 What is a flow?

 Packets vs. Messages

 FIFO, Round-Robin,
Priorities (Quality-of-
Service (QoS))

 Congested?

 LAN, MAN, WAN

 SAN (System Area
Networks

A switch multiplexing packets from

multiple sources onto one shared

link

13

C
h
a
p
te

r 1

Support for Common Services

 Logical Channels

 Application-to-Application communication path or a

pipe

Process communicating over an

abstract channel

14

C
h
a
p
te

r 1

Common Communication Patterns

 Client/Server

 Two types of communication channel

 Request/Reply Channels

 Message Stream Channels

15

C
h
a
p
te

r 1

Reliability

 Network should hide the errors

 Bits are lost

 Bit errors (1 to a 0, and vice versa)

 Burst errors – several consecutive errors

 Packets are lost (Congestion)

 Links and Node failures

 Messages are delayed

 Messages are delivered out-of-order

 Third parties eavesdrop

16

C
h
a
p
te

r 1

Network Architecture

Example of a layered network system

17

C
h
a
p
te

r 1

Network Architecture

Layered system with alternative abstractions available at a given layer

18

C
h
a
p
te

r 1

Protocols

 Protocol defines the interfaces between the
layers in the same system and with the layers of
peer system

 Building blocks of a network architecture

 Each protocol object has two different interfaces

 service interface: operations on this protocol

 peer-to-peer interface: messages exchanged with

peer

 Term ―protocol‖ is overloaded

 specification of peer-to-peer interface

 module that implements this interface

19

C
h
a
p
te

r 1

Interfaces

Service and Peer Interfaces

20

C
h
a
p
te

r 1

Protocols

 Protocol Specification: prose, pseudo-code, state

transition diagram

 Interoperable: when two or more protocols that

implement the specification accurately

 IETF: Internet Engineering Task Force

21

C
h
a
p
te

r 1

Protocol Graph

Example of a protocol graph

nodes are the protocols and links the ―depends-on‖ relation

22

C
h
a
p
te

r 1

Encapsulation

High-level messages are encapsulated inside of low-level messages

23

C
h
a
p
te

r 1

OSI Architecture

The OSI 7-layer Model

OSI – Open Systems Interconnection

24

C
h
a
p
te

r 1

Description of Layers

 Physical Layer

 Handles the transmission of raw bits over a communication link

 Data Link Layer

 Collects a stream of bits into a larger aggregate called a frame

 Network adaptor along with device driver in OS implement the

protocol in this layer

 Frames are actually delivered to hosts

 Network Layer

 Handles routing among nodes within a packet-switched network

 Unit of data exchanged between nodes in this layer is called a

packet

The lower three layers are implemented on all network nodes

25

C
h
a
p
te

r 1

Description of Layers

 Transport Layer

 Implements a process-to-process channel

 Unit of data exchanges in this layer is called a message

 Session Layer

 Provides a name space that is used to tie together the potentially

different transport streams that are part of a single application

 Presentation Layer

 Concerned about the format of data exchanged between peers

 Application Layer

 Standardize common type of exchanges

The transport layer and the higher layers typically run only on end-

hosts and not on the intermediate switches and routers

26

C
h
a
p
te

r 1

Internet Architecture

Internet Protocol Graph

Alternative view of the

Internet architecture. The

―Network‖ layer shown here

is sometimes referred to as

the ―sub-network‖ or ―link‖

layer.

27

C
h
a
p
te

r 1

Internet Architecture

 Defined by IETF

 Three main features

 Does not imply strict layering. The application is free to bypass

the defined transport layers and to directly use IP or other

underlying networks

 An hour-glass shape – wide at the top, narrow in the middle and

wide at the bottom. IP serves as the focal point for the

architecture

 In order for a new protocol to be officially included in the

architecture, there needs to be both a protocol specification and

at least one (and preferably two) representative implementations

of the specification

28

C
h
a
p
te

r 1

Application Programming Interface

 Interface exported by the network

 Since most network protocols are implemented (those in
the high protocol stack) in software and nearly all
computer systems implement their network protocols as
part of the operating system, when we refer to the
interface ―exported by the network‖, we are generally
referring to the interface that the OS provides to its
networking subsystem

 The interface is called the network Application
Programming Interface (API)

29

C
h
a
p
te

r 1

Application Programming Interface (Sockets)

 Socket Interface was originally provided by the
Berkeley distribution of Unix

- Now supported in virtually all operating systems

 Each protocol provides a certain set of services,
and the API provides a syntax by which those
services can be invoked in this particular OS

30

C
h
a
p
te

r 1

Socket

 What is a socket?

 The point where a local application process attaches
to the network

 An interface between an application and the network

 An application creates the socket

 The interface defines operations for

 Creating a socket

 Attaching a socket to the network

 Sending and receiving messages through the socket

 Closing the socket

31

C
h
a
p
te

r 1

Socket

 Socket Family

 PF_INET denotes the Internet family

 PF_UNIX denotes the Unix pipe facility

 PF_PACKET denotes direct access to the network
interface (i.e., it bypasses the TCP/IP protocol stack)

 Socket Type

 SOCK_STREAM is used to denote a byte stream

 SOCK_DGRAM is an alternative that denotes a
message oriented service, such as that provided by
UDP

32

C
h
a
p
te

r 1

Creating a Socket

int sockfd = socket(address_family, type, protocol);

 The socket number returned is the socket descriptor for

the newly created socket

 int sockfd = socket (PF_INET, SOCK_STREAM, 0);

 int sockfd = socket (PF_INET, SOCK_DGRAM, 0);

The combination of PF_INET and SOCK_STREAM implies TCP

33

C
h
a
p
te

r 1

Client-Serve Model with TCP

Server

 Passive open

 Prepares to accept connection, does not actually establish a

connection

Server invokes
int bind (int socket, struct sockaddr *address,

int addr_len)

int listen (int socket, int backlog)

int accept (int socket, struct sockaddr *address,

int *addr_len)

34

C
h
a
p
te

r 1

Client-Serve Model with TCP

Bind

 Binds the newly created socket to the specified address i.e. the

network address of the local participant (the server)

 Address is a data structure which combines IP and port

Listen

 Defines how many connections can be pending on the specified

socket

35

C
h
a
p
te

r 1

Client-Serve Model with TCP

Accept

 Carries out the passive open

 Blocking operation

 Does not return until a remote participant has established a

connection

 When it does, it returns a new socket that corresponds to the

new established connection and the address argument
contains the remote participant’s address

36

C
h
a
p
te

r 1

Client-Serve Model with TCP

Client

 Application performs active open

 It says who it wants to communicate with

Client invokes

int connect (int socket, struct sockaddr *address,

int addr_len)

Connect

 Does not return until TCP has successfully established a

connection at which application is free to begin sending data

 Address contains remote machine’s address

37

C
h
a
p
te

r 1

Client-Serve Model with TCP

In practice

 The client usually specifies only remote participant’s

address and let’s the system fill in the local

information

 Whereas a server usually listens for messages on a

well-known port

 A client does not care which port it uses for itself, the

OS simply selects an unused one

38

C
h
a
p
te

r 1

Client-Serve Model with TCP

Once a connection is established, the application

process invokes two operation

int send (int socket, char *msg, int msg_len,

int flags)

int recv (int socket, char *buff, int buff_len,

int flags)

39

C
h
a
p
te

r 1

Example Application: Client

#include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netdb.h>

#define SERVER_PORT 5432

#define MAX_LINE 256

int main(int argc, char * argv[])

{

FILE *fp;

struct hostent *hp;

struct sockaddr_in sin;

char *host;

char buf[MAX_LINE];

int s;

int len;

if (argc==2) {

host = argv[1];

}

else {

fprintf(stderr, "usage: simplex-talk host\n");

exit(1);

}

40

C
h
a
p
te

r 1

Example Application: Client
/* translate host name into peer’s IP address */

hp = gethostbyname(host);

if (!hp) {

fprintf(stderr, "simplex-talk: unknown host: %s\n", host);

exit(1);

}

/* build address data structure */

bzero((char *)&sin, sizeof(sin));

sin.sin_family = AF_INET;

bcopy(hp->h_addr, (char *)&sin.sin_addr, hp->h_length);

sin.sin_port = htons(SERVER_PORT);

/* active open */

if ((s = socket(PF_INET, SOCK_STREAM, 0)) < 0) {

perror("simplex-talk: socket");

exit(1);

}

if (connect(s, (struct sockaddr *)&sin, sizeof(sin)) < 0) {

perror("simplex-talk: connect");

close(s);

exit(1);

}

/* main loop: get and send lines of text */

while (fgets(buf, sizeof(buf), stdin)) {

buf[MAX_LINE-1] = ’\0’;

len = strlen(buf) + 1;

send(s, buf, len, 0);

}

}

41

C
h
a
p
te

r 1

Example Application: Server
#include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netdb.h>

#define SERVER_PORT 5432

#define MAX_PENDING 5

#define MAX_LINE 256

int main()

{

struct sockaddr_in sin;

char buf[MAX_LINE];

int len;

int s, new_s;

/* build address data structure */

bzero((char *)&sin, sizeof(sin));

sin.sin_family = AF_INET;

sin.sin_addr.s_addr = INADDR_ANY;

sin.sin_port = htons(SERVER_PORT);

/* setup passive open */

if ((s = socket(PF_INET, SOCK_STREAM, 0)) < 0) {

perror("simplex-talk: socket");

exit(1);

}

42

C
h
a
p
te

r 1

Example Application: Server

if ((bind(s, (struct sockaddr *)&sin, sizeof(sin))) < 0) {

perror("simplex-talk: bind");

exit(1);

}

listen(s, MAX_PENDING);

/* wait for connection, then receive and print text */

while(1) {

if ((new_s = accept(s, (struct sockaddr *)&sin, &len)) < 0) {

perror("simplex-talk: accept");

exit(1);

}

while (len = recv(new_s, buf, sizeof(buf), 0))

fputs(buf, stdout);

close(new_s);

}

}

43

C
h
a
p
te

r 1

Performance

 Bandwidth

 Width of the frequency band

 Number of bits per second that can be transmitted over a

communication link

 1 Mbps: 1 x 106 bits/second = 1x220 bits/sec

 1 x 10-6 seconds to transmit each bit or imagine that a

timeline, now each bit occupies 1 micro second space.

 On a 2 Mbps link the width is 0.5 micro second.

 Smaller the width more will be transmission per unit time.

44

C
h
a
p
te

r 1

Bandwidth

Bits transmitted at a particular bandwidth can be regarded as

having some width:

(a) bits transmitted at 1Mbps (each bit 1 μs wide);

(b) bits transmitted at 2Mbps (each bit 0.5 μs wide).

45

C
h
a
p
te

r 1

Performance

 Latency = Propagation + transmit + queue

 Propagation = distance/speed of light

 Transmit = size/bandwidth

 One bit transmission => propagation is important

 Large bytes transmission => bandwidth is important

46

C
h
a
p
te

r 1

Delay X Bandwidth

 We think the channel between a pair of processes as a

hollow pipe

 Latency (delay) length of the pipe and bandwidth the

width of the pipe

 Delay of 50 ms and bandwidth of 45 Mbps

 50 x 10-3 seconds x 45 x 106 bits/second

 2.25 x 106 bits = 280 KB data.

Network as a pipe

47

C
h
a
p
te

r 1

Delay X Bandwidth

 Relative importance of bandwidth and latency

depends on application

 For large file transfer, bandwidth is critical

 For small messages (HTTP, NFS, etc.), latency is

critical

 Variance in latency (jitter) can also affect some

applications (e.g., audio/video conferencing)

48

C
h
a
p
te

r 1

Delay X Bandwidth

 How many bits the sender must transmit

before the first bit arrives at the receiver if the

sender keeps the pipe full

 Takes another one-way latency to receive a

response from the receiver

 If the sender does not fill the pipe—send a
whole delay × bandwidth product’s worth of

data before it stops to wait for a signal—the

sender will not fully utilize the network

49

C
h
a
p
te

r 1

Delay X Bandwidth

 Infinite bandwidth

 RTT dominates

 Throughput = TransferSize / TransferTime

 TransferTime = RTT + 1/Bandwidth x

TransferSize

 Its all relative

 1-MB file to 1-Gbps link looks like a 1-KB

packet to 1-Mbps link

50

C
h
a
p
te

r 1

Relationship between bandwidth and latency

A 1-MB file would fill the 1-Mbps link 80 times,

but only fill the 1-Gbps link 1/12 of one time

51

C
h
a
p
te

r 1

Summary

 We have identified what we expect from a computer

network

 We have defined a layered architecture for computer

network that will serve as a blueprint for our design

 We have discussed the socket interface which will be

used by applications for invoking the services of the

network subsystem

 We have discussed two performance metrics using which

we can analyze the performance of computer networks

