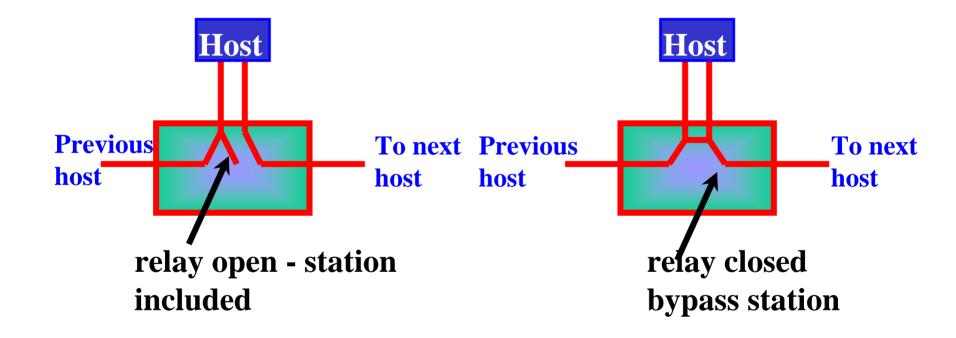
IEEE 802.5 Token Ring

- Consists of a set of nodes connected in a ring.
- Data flows in a particular direction only.
- Data received from upstream neighbour forwarded to downstream neighbour.
- Token access to the shared ring
 - a special sequence of bits
 - circulates around the ring.

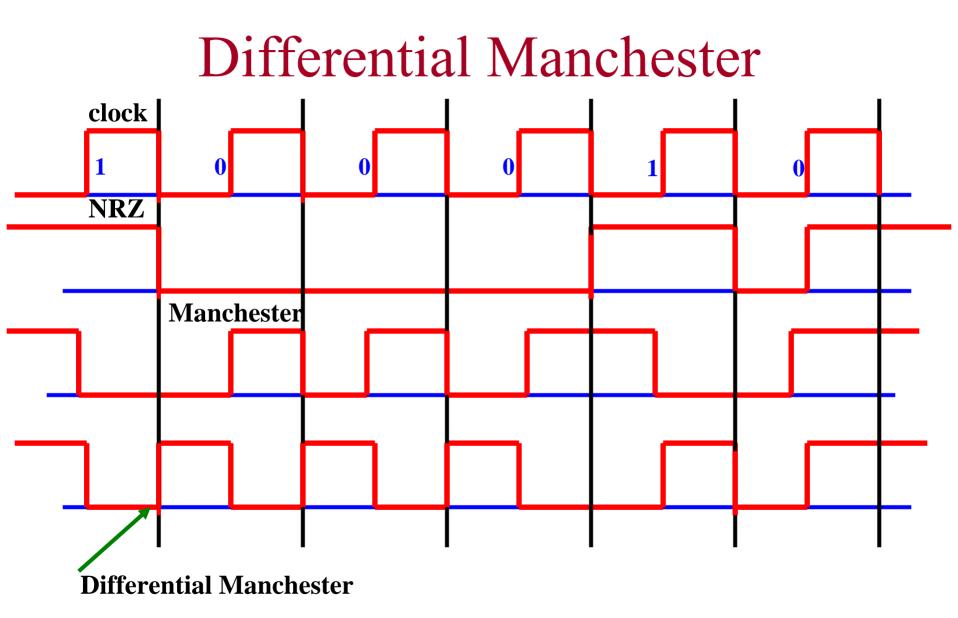

IEEE 802.5 Token Ring

- Each node receives and forwards token.
- Frame makes its way back to sender
 - frame removed by sender
 - sender reinsert token.
- As token circulates around ring, each station gets a chance to transmit
 - Service round robin fashion

Token Ring Issues

- Any link or node failure
 - Network rendered useless
- Solution
 - electromechanical relay
 - Station active relay is open and station included
 - Station is inactive
 - no power
 - relay closed
 - bypass station

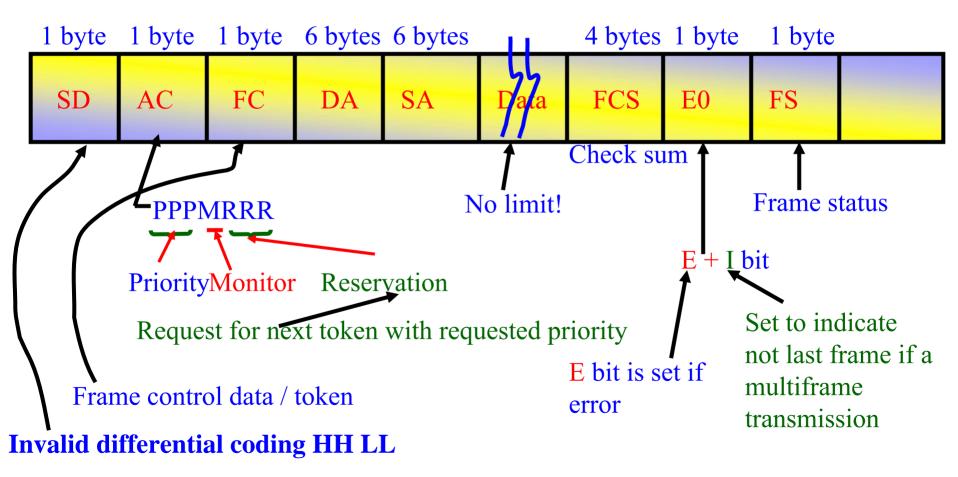
Token Ring Issues


Multistation Access Unit (MSAU)

• Several relays in a box • Add new station H, – Plug into MSAU H_1 H₃ **From prev MSAU** H

To next MSA

Token Ring (Characteristics)


- Date rate: 4 Mbps or 16 Mbps
- encoding: differential manchester
- 802.5 upto 250 station
- physical medium is +P for IBM not specified in 802.5

Token Ring Access Control

- Network adapter: receiver, and transmitter, and one or more bits of data storage between them.
- When no stations have anything to transmit token circulates
- Ring has enough storage capacity to hold an entire token.
 - 1 bit / station

Token Ring Frame Format

- Token Size: 24 bits
 - Minimum number of stations is 24
 - Overcome this by including a monitor which adds the extra bits of delay
- Token operation
 - Token circulates
 - Station seizes a token

- Modifies a bit in the second byte of token
- Station that has token transmits data
- Station drains token out of the ring
- Station sends data
- Each packet has destination address
- All stations downhill check destination address
- Destination copies packet
- Packet finds its way back to sending station

- Sending station removes packet from ring
- Station reinserts token into the ring
- Size of packet stored in the ring
 - Larger/smaller than ring
 - Add/remove bits

- Issues
 - Size of data that given node is allowed to transmit
 - Token holding time (THT) = ∞ ?
 - Utilisation is 100%
 - Unfair to stations to other than the station holding the token
 - THT affects ring performance

Token Holding Time

- Token Rotation Time (TRT):
- TRT ≤ Active nodes * THT + Ring Latency
- Ring Latency token circulation time

Reliable Transmission

- Use A and C bits
- Initially A and C zero.
- Receiver sets A bit after seeing that it is the intended recipient
- Receiver sets C bit after copying frame
- If both A and C are not set retransmit

Priorities in IEEE 802.5

- Supports different levels of priority
 - -3 bits
 - each station waiting to send, sets priority for packet packet's priority as high current token
 - then token can be seized
 - Intending to send station sets the priority on currently passing data frame

Priorities in IEEE 802.5

- releasing station sets priority of token to **n**.
- Lower priority packets circulate for long in ring
- Token Release
 - Early release
 - After transmitting packet
 - Delayed release
 - After removing packet when it returns to the sender

- Designated monitor
 - any station can become a monitor
 - defined procedures for becoming a monitor
 - healthy monitor announces that it is a monitor at periodic interval
 - if a station does not see that packet for some time then it sends a "claim token"
 - if claim token comes back to station then it is monitor
 - if another wants to claim see other stations claim first some arbitration rule.

- Role of monitor
 - insert additional delay in ring
 - ensure always that there is a token somewhere in the ring
 - regenerate a vanished token
 - no token seen for TRT => regenerate

- orphaned / corrupted packets drain them if orphaned
 - (A and C bits set parent dies)
 - A bit set C bit not set parent dies
- bit is initially set to 1 by monitor
 - monitor notices back when packet passes by monitor a second time

- Detection of dead stations
 - some problem un detected
 - suspecting station sends a beacon frame –
 - how far beacon goes decide which stations must be bypassed.