Internetworking

Internetworking

- What is internetwork
 - An arbitrary collection of networks interconnected to provide some sort of host-host to packet delivery service

A simple internetwork where H represents hosts and R represents routers

Internetworking

- What is IP
 - IP stands for Internet Protocol
 - Key tool used today to build scalable, heterogeneous internetworks
 - It runs on all the nodes in a collection of networks and defines the infrastructure that allows these nodes and networks to function as a single logical internetwork

A simple internetwork showing the protocol layers

IP Service Model

- Packet Delivery Model
 - Connectionless model for data delivery
 - Best-effort delivery (unreliable service)
 - packets are lost
 - packets are delivered out of order
 - duplicate copies of a packet are delivered
 - packets can be delayed for a long time
- Global Addressing Scheme
 - Provides a way to identify all hosts in the network

Packet Format

- Version (4): currently 4
- Hlen (4): number of 32-bit words in header
- TOS (8): type of service (not widely used)
- Length (16): number of bytes in this datagram
- Ident (16): used by fragmentation
- Flags/Offset (16): used by fragmentation
- TTL (8): number of hops this datagram has traveled
- Protocol (8): demux key (TCP=6, UDP=17)
- Checksum (16): of the header only
- DestAddr & SrcAddr (32)

IP Fragmentation and Reassembly

- Each network has some MTU (Maximum Transmission Unit)
 - Ethernet (1500 bytes), FDDI (4500 bytes)
- Strategy
 - Fragmentation occurs in a router when it receives a datagram that it wants to forward over a network which has (MTU < datagram)
 - Reassembly is done at the receiving host
 - All the fragments carry the same identifier in the *Ident* field
 - Fragments are self-contained datagrams
 - IP does not recover from missing fragments

IP Fragmentation and Reassembly

IP datagrams traversing the sequence of physical networks

IP Fragmentation and Reassembly

(a)	Start of header		
	Ident = x 0 Offset = 0		
	Rest of header 1400 data bytes		
(b)	Start of header		
	Ident = x 1 Offset = 0		
	Rest of header		
	512 data bytes		
	Start of header		
	Ident=x 1 Offset=64		
	Rest of header		
	512 data bytes		
	Start of header		
	Ident = x 0 Offset = 128		
	Rest of header		
	376 data bytes		

Header fields used in IP fragmentation. (a) Unfragmented packet; (b) fragmented packets.

Global Addresses

- Properties
 - globally unique
 - hierarchical: network + host
 - 4 Billion IP address, half are A type, ¼ is B type, and 1/8 is C type
- Format

- Dot notation
 - **10.3.2.4**
 - **128.96.33.81**
 - **192.12.69.77**

IP Datagram Forwarding

- Strategy
 - every datagram contains destination's address
 - if directly connected to destination network, then forward to host
 - if not directly connected to destination network, then forward to some router
 - forwarding table maps network number into next hop
 - each host has a default router
 - each router maintains a forwarding table
- Example (router R2)

NetworkNum	NextHop
1	R1
2	Interface 1
3	Interface 0
4	R3

IP Datagram Forwarding

Algorithm

if (NetworkNum of destination = NetworkNum of one of my
interfaces) then

deliver packet to destination over that interface

else

if (NetworkNum of destination is in my forwarding table)
then

deliver packet to NextHop router

else

deliver packet to default router

For a host with only one interface and only a default router in its forwarding table, this simplifies to

if (NetworkNum of destination = my NetworkNum) then
 deliver packet to destination directly

else

deliver packet to default router

Summary

- We have looked at some of the issues involved in building scalable and heterogeneous networks by using switches and routers to interconnect links and networks.
- To deal with heterogeneous networks, we have discussed in details the service model of Internetworking Protocol (IP) which forms the basis of today's routers.