

 Goal of TCP is to determine the available

network capacity and to prevent network

overload.

 Depends on other connections that share the link

 Originally TCP assumed FIFO queuing.

2

 Congestion is bad for the overall performance in

the network.

◦ Excessive delays can be caused.

◦ Retransmissions may result due to dropped packets

 Waste of capacity and resources.

◦ In some cases (UDP) packet losses are not recovered.

 Note: Main reason for lost packets in the Internet

is due to congestion -- errors are rare.

3

 CongestionWindow (cwnd) is a variable held by
the TCP source for each connection.

MaxWindow = min (CongestionWindow ,
AdvertisedWindow)

EffectiveWindow = MaxWindow – (LastByteSent -

LastByteAcked)
 cwnd is set based on the perceived level of

congestion. The Host receives implicit (packet
drop) or explicit (packet mark) indications of
internal congestion.

4

 Decrease Congestion window when TCP

perceives high congestion.

 Increase Congestion window when TCP knows

that there is not much congestion.

 How much Increase / Decrease ?

◦ Since increased congestion is more catastrophic,

reduce it more aggressively.

◦ Increase is additive, decrease is multiplicative - called

the Additive Increase/Multiplicative Decrease (AIMD)

behavior of TCP.

5

 Additive Increase is a reaction to perceived

available capacity.

 For each cwnd’s worth of packets sent, increase

cwnd by 1 packet.

 In practice, cwnd is incremented fractionally for

each arriving ACK.

increment = MSS x (MSS /cwnd)

cwnd = cwnd + increment

6

7

Source Destination

 The key assumption is that a dropped packet and
the resultant timeout (no ack) are due to
congestion at a router or a switch.

 TCP reacts to a timeout by halving cwnd.

 Although cwnd is defined in bytes, the literature
often discusses congestion control in terms of
packets (or more formally in MSS == Maximum
Segment Size).

 cwnd is not allowed below the size of a single
packet.

8

 Linear additive increase takes too long to ramp up

a new TCP connection from cold start.

 Beginning with TCP, the slow start mechanism

was added to provide an initial exponential

increase in the size of cwnd.

9

 The source starts with cwnd = 1.

 Every time an ACK arrives, cwnd is incremented.

 cwnd is effectively doubled per RTT “epoch”.

 Two slow start situations:

◦ At the very beginning of a connection {cold start}.

◦ When the connection goes dead waiting for a timeout

to occur (i.e, the advertized window goes to zero!)

10

11

Source Destination

 Coarse timeouts remained a problem, and Fast

retransmit was added with TCP.

 Since the receiver responds every time a packet

arrives, this implies the sender will see duplicate

ACKs.

 Use duplicate ACKs to signal lost packet.

 Upon receipt of three duplicate ACKs, the TCP

Sender retransmits the lost packet.

12

 Generally, fast retransmit eliminates about half

the coarse-grain timeouts.

 This yields roughly a 20% improvement in

throughput.

 Note – Fast Retransmit does not eliminate all the

timeouts due to small window sizes at the source.

13

14

Packet 1

Packet 2

Packet 3

Packet 4

Packet 5

Packet 6

Retransmit

packet 3

ACK 1

ACK 2

ACK 2

ACK 2

ACK 6

ACK 2

Sender Receiv er

 Fast recovery was added with TCP.

 When fast retransmit detects three duplicate

ACKs, start the recovery process from congestion

 After Fast Retransmit, half the cwnd and

commence recovery from this point using linear additive

increase.

15

 TCP repeatedly increases the load on the network

in an effort to find the point at which congestion

occurs, and then it backs off from this point.

 TCP needs to create losses to find the available

bandwidth of the connection

 Predict when congestion is about to happen and

then to reduce the rate at which hosts send data

just before packets start being discarded

17

 The first mechanism was developed for use on
the Digital Network Architecture (DNA)

 Evenly split the responsibility for congestion
control between the routers and the end nodes

 Each router monitors the load it is experiencing
and explicitly notifies the end nodes when
congestion is about to occur

 Notification is implemented by setting a binary
congestion bit in the packets that flow through
the router

18

 The destination host then copies this congestion

bit into the ACK it sends back to the source

 The source adjusts its sending rate so as to avoid

congestion.

 A router sets this bit in a packet if its average

queue length is greater than or equal to 1 at the

time the packet arrives

 Average Queue Length = Last busy cycle +idle cycle +

the current busy cycle

19

20

 Invented by Sally Floyd and Van Jacobson

 Similar to the DECbit

 Each router is programmed to monitor its own

queue length, and when it detects that congestion

is imminent, to notify the source to adjust its

congestion window

 Differs from the DECbit scheme in two major

ways

21

 Rather than explicitly sending a congestion

notification message to the source, router implicitly

notifies the source about congestion by dropping

one of its packets.

 The source is, therefore, effectively notified by

the subsequent timeout or duplicate ACK

22

 The details of how RED decides when to drop a

packet and what packet it decides to drop.

 Consider a simple FIFO queue

 Rather than wait for the queue to become

completely full and then be forced to drop each

arriving packet, decide to drop each arriving

packet with some drop probability whenever the

queue length exceeds some drop level.

23

 AvgLen = (1−Weight) xAvgLen +Weight x SampleLen

 0 <Weight < 1

 SampleLen is the length of the queue when a

sample measurement is made

24

 RED has two queue length thresholds

MinThreshold and MaxThreshold

 if AvgLen ≤ MinThreshold

→ queue the packet

 if MinThreshold < AvgLen < MaxThreshold

→ calculate probability P

→ drop the arriving packet with probability P

 if MaxThreshold ≤ AvgLen

→ drop the arriving packet

25

26

 Having routers participate in congestion control
requires changes to core routers is difficult.

 It is better to do this end-to-end.

 However, we want to still have source based
control -- now, it would be source based
congestion avoidance.

 We need a TCP that watches out for signs of
congestion

27

 How much does the RTT increase with each

packet sent ?

◦ Note that with each additional packet, we are adding

load.

 One way is to compute for every two round trip

delays (with an increase in a segment) to see if

◦ Observed RTT > avg of min and maximum RTT.

 If yes, reduce congestion window one eighth.

28

 The current window size is based on changes to
both the RTT and the window size.

 The window is adjusted once every two round-
trip delays based on the product

(CurrentWindow − OldWindow) x
(CurrentRTT − OldRTT)

 If the result is positive, the source decreases the
window size by one-eighth

 If the result is negative or zero, the source
increases the window by one maximum packet
size

29

