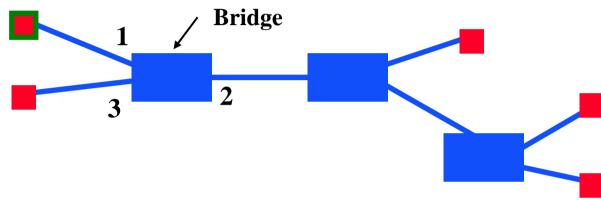

Building Larger LANs: Bridges

- Bridges connect multiple IEEE 802 LANs at layer 2.
 - » Only forward packets to the right port
 - » Reduce collision domain compared with single LAN
- In contrast, hubs rebroadcast packets.

Transparent Bridges

- Design goals:
 - "Plug and play" capability
 - » Self-configuring without hardware or software changes
 - » Bridge do not impact the operation of the individual LANs
- Three parts to making bridges transparent:
 - 1) Forwarding of frames
 - 2) Learning of addresses
 - 3) Spanning tree algorithm

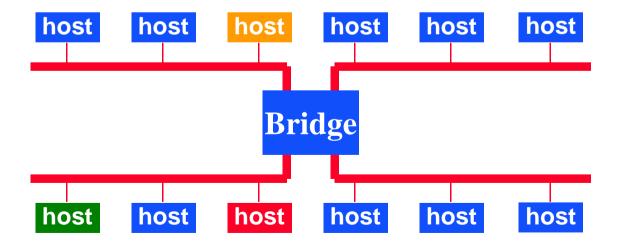

Frame Forwarding

Each switch maintains a forwarding database:

```
<MAC address, port, age>
MAC address: host or group address
Port: port number on the bridge
Age: age of the entry
```

- Meaning: A machine with <u>MAC address</u> lies in the direction of number <u>port</u> of the bridge
- For every packet, the bridge "looks up" the entry for the packets destination MAC address and forwards the packet on that port.
 - » Other packets are broadcasted why?

Address Lookup



Address	Next Hop	Info
A21032C9A591	1	8:36
99A323C90842	2	8:01
8711C98900AA	2	8:15
301B2369011C	2	8:16
695519001190	3	8:11

- Address is a 48 bit IEEE MAC address.
- Next hop: output port for packet.
- Timer is used to flush old entries
- Size of the table is equal to the number of hosts.

Learning Bridges

- Bridge tables can be filled in manually.
 - » Time consuming, error-prone
 - » Self-configuring preferred
- Keep track of source address of packets arriving on every link, showing what segment hosts are on.
 - » Fill in the forwarding table based on this information

