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Adaptive Flow Control
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TCP Flow Control
 LastByteRcvd − LastByteRead ≤ MaxRcvBuffer
 AdvertisedWindow = MaxRcvBuffer − 

((NextByteExpected − 1) − LastByteRead)
 LastByteSent − LastByteAcked ≤ AdvertisedWindow
 EffectiveWindow = AdvertisedWindow − (LastByteSent − 

LastByteAcked)
 LastByteWritten − LastByteAcked ≤ MaxSendBuffer
 If the sending process tries to write y bytes to TCP, but

(LastByteWritten − LastByteAcked) + y > MaxSendBuffer
then TCP blocks the sending process and does not allow 
it to generate more data.



3

Protecting against Wraparound
 SequenceNum: 32 bits longs
 AdvertisedWindow: 16 bits long

 TCP has satisfied the requirement of the sliding 
 window algorithm that is the sequence number 
 space be twice as big as the window size 
 232 >> 2 × 216
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Protecting against Wraparound
 Relevance of the 32-bit sequence number space

 The sequence number used on a given connection might 
wraparound 

 A byte with sequence number x could be sent at one time, and 
then at a  later time a second byte with the same sequence 
number x could be sent

 Packets cannot survive in the Internet for longer than the MSL
 MSL is set to 120 sec
 We need to make sure that the sequence number does not wrap 

around within a 120-second period of time
 Depends on how fast data can be transmitted over the Internet
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Protecting against Wraparound

Time until 32-bit sequence number space wraps around.
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Keeping the Pipe Full
 16-bit AdvertisedWindow field must be big enough to 

allow the sender to keep the pipe full
 Clearly the receiver is free not to open the window as 

large as the AdvertisedWindow field allows
 If the receiver has enough buffer space

 The window needs to be opened far enough to allow a full 
 delay × bandwidth product’s worth of data
 Assuming an RTT of 100 ms



7

Keeping the Pipe Full

Required window size for 100-ms RTT.
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Triggering Transmission
 How does TCP decide to transmit a segment?

 TCP supports a byte stream abstraction
 Application programs write bytes into streams
 It is up to TCP to decide that it has enough bytes to send a 

segment
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Triggering Transmission
 What factors governs this decision

 Ignore flow control: window is wide open, as would be the case 
when the connection starts

 TCP has three mechanism to trigger the transmission of a 
segment

 1) TCP maintains a variable MSS and sends a segment as soon as 
it has collected MSS bytes from the sending process

 MSS is usually set to the size of the largest segment TCP can send without 
causing local IP to fragment.

 MSS: MTU of directly connected network – (TCP header + and IP header)
 2) Sending process has explicitly asked TCP to send it

 TCP supports push operation
 3) When a timer fires

 Resulting segment contains as many bytes as are currently buffered for 
transmission  
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Silly Window Syndrome
 If you think of a TCP stream as a conveyer belt with “full” 

containers (data segments) going in one direction and 
empty containers (ACKs) going in the reverse direction, 
then MSS-sized segments correspond to large 
containers and 1-byte segments correspond to very small 
containers. 

 If the sender aggressively fills an empty container as 
soon as it arrives, then any small container introduced 
into the system remains in the system indefinitely. 

 That is, it is immediately filled and emptied at each end, 
and never coalesced with adjacent containers to create 
larger containers.
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Silly Window Syndrome

Silly Window Syndrome



12

Nagle’s Algorithm
 If there is data to send but the window is open less than 

MSS, then we may want to wait some amount of time 
before sending the available data

 But how long?
 If we wait too long, then we hurt interactive applications 

like Telnet
 If we don’t wait long enough, then we risk sending a 

bunch of tiny packets and falling into the silly window 
syndrome
 The solution is to introduce a timer and to transmit when the 

timer expires
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Nagle’s Algorithm
 We could use a clock-based timer, for example one that 

fires every 100 ms
 Nagle introduced an elegant self-clocking solution
 Key Idea

 As long as TCP has any data in flight, the sender will eventually 
receive an ACK

 This ACK can be treated like a timer firing, triggering the 
transmission of more data
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Nagle’s Algorithm

When the application produces data to send
if both the available data and the window ≥ MSS

send a full segment
else

if there is unACKed data in flight
buffer the new data until an ACK arrives

else
send all the new data now


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

