
1

Adaptive Flow Control

2

TCP Flow Control
 LastByteRcvd − LastByteRead ≤ MaxRcvBuffer
 AdvertisedWindow = MaxRcvBuffer −

((NextByteExpected − 1) − LastByteRead)
 LastByteSent − LastByteAcked ≤ AdvertisedWindow
 EffectiveWindow = AdvertisedWindow − (LastByteSent −

LastByteAcked)
 LastByteWritten − LastByteAcked ≤ MaxSendBuffer
 If the sending process tries to write y bytes to TCP, but

(LastByteWritten − LastByteAcked) + y > MaxSendBuffer
then TCP blocks the sending process and does not allow
it to generate more data.

3

Protecting against Wraparound
 SequenceNum: 32 bits longs
 AdvertisedWindow: 16 bits long

 TCP has satisfied the requirement of the sliding
 window algorithm that is the sequence number
 space be twice as big as the window size
 232 >> 2 × 216

4

Protecting against Wraparound
 Relevance of the 32-bit sequence number space

 The sequence number used on a given connection might
wraparound

 A byte with sequence number x could be sent at one time, and
then at a later time a second byte with the same sequence
number x could be sent

 Packets cannot survive in the Internet for longer than the MSL
 MSL is set to 120 sec
 We need to make sure that the sequence number does not wrap

around within a 120-second period of time
 Depends on how fast data can be transmitted over the Internet

5

Protecting against Wraparound

Time until 32-bit sequence number space wraps around.

6

Keeping the Pipe Full
 16-bit AdvertisedWindow field must be big enough to

allow the sender to keep the pipe full
 Clearly the receiver is free not to open the window as

large as the AdvertisedWindow field allows
 If the receiver has enough buffer space

 The window needs to be opened far enough to allow a full
 delay × bandwidth product’s worth of data
 Assuming an RTT of 100 ms

7

Keeping the Pipe Full

Required window size for 100-ms RTT.

8

Triggering Transmission
 How does TCP decide to transmit a segment?

 TCP supports a byte stream abstraction
 Application programs write bytes into streams
 It is up to TCP to decide that it has enough bytes to send a

segment

9

Triggering Transmission
 What factors governs this decision

 Ignore flow control: window is wide open, as would be the case
when the connection starts

 TCP has three mechanism to trigger the transmission of a
segment

 1) TCP maintains a variable MSS and sends a segment as soon as
it has collected MSS bytes from the sending process

 MSS is usually set to the size of the largest segment TCP can send without
causing local IP to fragment.

 MSS: MTU of directly connected network – (TCP header + and IP header)
 2) Sending process has explicitly asked TCP to send it

 TCP supports push operation
 3) When a timer fires

 Resulting segment contains as many bytes as are currently buffered for
transmission

10

Silly Window Syndrome
 If you think of a TCP stream as a conveyer belt with “full”

containers (data segments) going in one direction and
empty containers (ACKs) going in the reverse direction,
then MSS-sized segments correspond to large
containers and 1-byte segments correspond to very small
containers.

 If the sender aggressively fills an empty container as
soon as it arrives, then any small container introduced
into the system remains in the system indefinitely.

 That is, it is immediately filled and emptied at each end,
and never coalesced with adjacent containers to create
larger containers.

11

Silly Window Syndrome

Silly Window Syndrome

12

Nagle’s Algorithm
 If there is data to send but the window is open less than

MSS, then we may want to wait some amount of time
before sending the available data

 But how long?
 If we wait too long, then we hurt interactive applications

like Telnet
 If we don’t wait long enough, then we risk sending a

bunch of tiny packets and falling into the silly window
syndrome
 The solution is to introduce a timer and to transmit when the

timer expires

13

Nagle’s Algorithm
 We could use a clock-based timer, for example one that

fires every 100 ms
 Nagle introduced an elegant self-clocking solution
 Key Idea

 As long as TCP has any data in flight, the sender will eventually
receive an ACK

 This ACK can be treated like a timer firing, triggering the
transmission of more data

14

Nagle’s Algorithm

When the application produces data to send
if both the available data and the window ≥ MSS

send a full segment
else

if there is unACKed data in flight
buffer the new data until an ACK arrives

else
send all the new data now

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

