
Wireless Networking
and Systems

ns2 tutorial

ns2- Network Simulator

� One of the most popular simulator among
networking researchers.

� Discrete event, Packet level simulator
� Events like ‘received an ack packet’, ‘enqueued a

data packet’

� Network protocol stack written in C++
� Tcl (Tool Command Language) used for

specifying scenarios and events.
� Unix Based. Runs also in windows using cygwin
� Simulates both wired and wireless networks.

Goal of this tutorial

� Understand how to write Tcl scripts to
simulate simple network topologies and
traffic patterns.

� Analyze the trace files and understand the
performance of the protocols.

Overview

� Wired
�Creating a simple two node network topology
�Adding traffic to the link
�UDP traffic
�TCP traffic
�Fault injection

� Wireless
�TCP performance on a linear chain of n nodes

Simple two node wired network

n0 n1

#Create a simulator object
set ns [new Simulator]

Step 1:

Step 2: #Open trace files
set f [open out.tr w]
$ns trace-all $f

Simple two node wired network

n0 n1

#Create two nodes
set n0 [$ns node]
set n1 [$ns node]

Step 3:

Step 4: #Create a duplex link between the nodes
$ns duplex-link $n0 $n1 1Mb 10ms DropTail

Simple two node wired network
#Create a simulator object
set ns [new Simulator]
#Open trace files
set f [open out.tr w]
$ns trace-all $f
#Define a 'finish' procedure
proc finish {} {

global ns
$ns flush-trace
exit 0

}
#Create two nodes
set n0 [$ns node]
set n1 [$ns node]
#Create a duplex link between the nodes
$ns duplex-link $n0 $n1 1Mb 10ms DropTail
#Call the finish procedure after 5 seconds of simul ation time
$ns at 5.0 "finish"
#Run the simulation
$ns run

Adding traffic to the link

n0 n1

udpudp

#Create a UDP agent and attach it to node n0
set udp0 [new Agent/UDP]
$ns attach-agent $n0 $udp0

Adding traffic to the link

n0 n1

udpudp

Create a CBR traffic source and attach it to udp0
set cbr0 [new Application/Traffic/CBR]
$cbr0 set packetSize_ 500
$cbr0 set interval_ 0.005
$cbr0 attach-agent $udp0

cbrcbr

Adding traffic to the link

n0 n1

udpudp

cbrcbr

#Create a Null agent (a traffic sink) and
attach it to node n1
set null0 [new Agent/Null]
$ns attach-agent $n1 $null0

nullnull

Adding traffic to the link

n0 n1

udpudp

cbrcbr

#Connect the traffic source with the traffic sink
$ns connect $udp0 $null0
#Schedule events for the CBR agent
$ns at 0.5 "$cbr0 start"
$ns at 4.5 "$cbr0 stop“

nullnull

Simulate a simple topology – UDP
Traffic

#Create a simulator object
set ns [new Simulator]
#Open trace files
set f [open out.tr w]
$ns trace-all $f
#Define a 'finish' procedure
proc finish {} {

global ns
$ns flush-trace
exit 0

}
#Create four nodes
set n0 [$ns node]
set n1 [$ns node]
set n2 [$ns node]
set n3 [$ns node]

n0

n1

n2 n3

sender

sender

router receiver

Simulate a simple topology – UDP
Traffic

#Create links between the nodes

$ns duplex-link $n0 $n2 1Mb 10ms DropTail
$ns duplex-link $n1 $n2 1Mb 10ms DropTail

$ns duplex-link $n3 $n2 1Mb 10ms SFQ

n0

n1

n2 n3

sender

sender

router receiver

#Create a UDP agent and attach it to node n0
set udp0 [new Agent/UDP]
$udp0 set class_ 1
$ns attach-agent $n0 $udp0

Simulate a simple topology – UDP
Traffic

n0

n1

n2 n3

sender

sender

router receiver

Simulate a simple topology – UDP
Traffic

Create a CBR traffic source and attach it to udp0
set cbr0 [new Application/Traffic/CBR]
$cbr0 set packetSize_ 500
$cbr0 set interval_ 0.005
$cbr0 attach-agent $udp0

n0

n1

n2 n3

sender

sender

router receiver

#Create a UDP agent and attach it to node n1
set udp1 [new Agent/UDP]
$udp1 set class_ 2
$ns attach-agent $n1 $udp1

Simulate a simple topology – UDP
Traffic

n0

n1

n2 n3

sender

sender

router receiver

Create a CBR traffic source and attach it to udp1

set cbr1 [new Application/Traffic/CBR]
$cbr1 set packetSize_ 500

$cbr1 set interval_ 0.005
$cbr1 attach-agent $udp1

Simulate a simple topology – UDP
Traffic

n0

n1

n2 n3

sender

sender

router receiver

#Create a Null agent (a traffic sink) and attach it to
node n3

set null0 [new Agent/Null]

$ns attach-agent $n3 $null0

Simulate a simple topology – UDP
Traffic

n0

n1

n2 n3

sender

sender

router receiver

#Connect the traffic sources with the traffic sink

$ns connect $udp0 $null0
$ns connect $udp1 $null0

Simulate a simple topology – UDP
Traffic

n0

n1

n2 n3

sender

sender

router receiver

#Schedule events for the CBR agents
$ns at 0.5 "$cbr0 start"
$ns at 1.0 "$cbr1 start"
$ns at 4.0 "$cbr1 stop"
$ns at 4.5 "$cbr0 stop"
#Call the finish procedure after 5 seconds of

simulation time
$ns at 5.0 "finish"
#Run the simulation
$ns run

Simulate a simple topology – UDP
Traffic

Trace Analysis
http://nsnam.isi.edu/nsnam/index.php/NS-2_Trace_For mats

TCP Traffic

� 0, 1, 2 are senders

� 3 is a Gateway
� 4 receiver

s1

s3

G r

sender

sender

gateway receiver

s2

sender

TCP Traffic

� #Create a TCP agent and attach it to node
s1

� set tcp1 [new Agent/TCP/Reno]
� $ns attach-agent $s1 $tcp1
� $tcp1 set window_ 8
� $tcp1 set fid_ 1

TCP Traffic
� #Create a TCP agent and attach it to node s2
� set tcp2 [new Agent/TCP/Reno]
� $ns attach-agent $s2 $tcp2
� $tcp2 set window_ 8
� $tcp2 set fid_ 2

� #Create a TCP agent and attach it to node s3
� set tcp3 [new Agent/TCP/Reno]
� $ns attach-agent $s3 $tcp3
� $tcp3 set window_ 4
� $tcp3 set fid_ 3

TCP Traffic

� #Create TCP sink agents and attach them to
node r

� set sink1 [new Agent/TCPSink]
� set sink2 [new Agent/TCPSink]
� set sink3 [new Agent/TCPSink]

� $ns attach-agent $r $sink1
� $ns attach-agent $r $sink2
� $ns attach-agent $r $sink3

TCP Traffic

� #Connect the traffic sources with the traffic
sinks

� $ns connect $tcp1 $sink1
� $ns connect $tcp2 $sink2
� $ns connect $tcp3 $sink3

TCP Traffic

� #Create FTP applications and attach them
to agents

� set ftp1 [new Application/FTP]
� $ftp1 attach-agent $tcp1
� set ftp2 [new Application/FTP]
� $ftp2 attach-agent $tcp2
� set ftp3 [new Application/FTP]
� $ftp3 attach-agent $tcp3

TCP Traffic

#Define a 'finish' procedure
proc finish {} {

global ns
$ns flush-trace
exit 0

}

$ns at 0.1 "$ftp1 start"
$ns at 0.1 "$ftp2 start"
$ns at 0.1 "$ftp3 start"
$ns at 5.0 "$ftp1 stop"
$ns at 5.0 "$ftp2 stop"
$ns at 5.0 "$ftp3 stop"
$ns at 5.25 "finish"
$ns run

Complex topology and link failure

0

1

2

34

5

6

sender

receiver

Complex topology and link failure

#Create a simulator object
set ns [new Simulator]
#Tell the simulator to use dynamic routing
$ns rtproto DV
#Define a 'finish' procedure
proc finish {} {

global ns
$ns flush-trace
exit 0

}

Complex topology and link failure

#Create seven nodes
for {set i 0} {$i < 7} {incr i} {
set n($i) [$ns node]
}
#Create links between the nodes
for {set i 0} {$i < 7} {incr i} {
$ns duplex-link $n($i) $n([expr ($i+1)%7]) 1Mb

10ms DropTail
}

Complex topology and link failure

� #Create a UDP agent and attach it to node n(0)
� # Create a CBR traffic source and attach it to udp0
� #Create a Null agent (a traffic sink) and attach it to node n(3)
� #Connect the traffic source with the traffic sink

#Schedule events for the CBR agent and the network dynamics
$ns at 0.5 "$cbr0 start"
$ns rtmodel-at 1.0 down $n(1) $n(2)
$ns rtmodel-at 2.0 up $n(1) $n(2)
$ns at 4.5 "$cbr0 stop"
#Call the finish procedure after 5 seconds of simulation time
$ns at 5.0 "finish"
#Run the simulation
$ns run

Wireless Linear Topology

1 2 3 4 n…

Run Wireless TCP for each connection separately
and look how the TCP congestion window changes.

� Refer:
http://www.cs.sunysb.edu/~samir/cse590/
ns-simulator.htm

