
Network Simulator 2 (NS2)

Introduction

� Simply an event driven simulation tool

� Proved useful in studying the dynamic
nature of communication networksnature of communication networks

� Simulation of wired as well as wireless
network functions and protocols

16-Sep-13 2

Basic Architecture

� ns executable command

� Takes on input argument, the name of a Tcl
(Tool Command Language) simulation (Tool Command Language) simulation
scripting file.

� A simulation trace file is created, and is used
to plot graph and/or to create animation

16-Sep-13 3

Basic Architecture Cont…

16-Sep-13 4

Basic Architecture Cont…

� NS2 consists of two key languages:
� C++ which defines the internal mechanism (i.e., a

backend) of the simulation objects

Object-oriented Tool Command Language (OTcl) � Object-oriented Tool Command Language (OTcl)
which sets up simulation by assembling and
configuring the objects as well as scheduling discrete
events (i.e., a front end)

� The C++ and the OTcl are linked together using
TclCL(Tcl With Classes)

16-Sep-13 5

Why Two Languages?
� OTcl to create and configure a network

� C++ to run simulation

� Use OTcl

For configuration, setup, or one time simulation� For configuration, setup, or one time simulation

� To run simulation with existing NS2 modules.

� Use C++

� When dealing with a packet

� When modifying existing NS2 modules

16-Sep-13 6

The first Tcl script

� Develop a Tcl script for ns which simulates
a simple topology

� How to set up nodes and links� How to set up nodes and links

� How to send data from one node to another

� How to monitor a queue and how to start
nam from Tcl script to visualize the
simulation.

16-Sep-13 7

Template

� Can write Tcl scripts in any text editor like joe or emacs

� Name the first example 'example1.tcl'.

� First step is to create a simulator object

set ns [new Simulator]set ns [new Simulator]

� Open a file for writing the nam trace data

set nf [open out.nam w]

$ns namtrace-all $nf

� The first line opens the file 'out.nam' for writing and returns file
handle 'nf'.

� In The second line, the simulator object ns writes all simulation
data relevant for nam into the file out.nam.

16-Sep-13 8

Template

� The next step is to add a 'finish' procedure that
closes the trace file and starts nam

proc finish { } {

global ns nfglobal ns nf

#Close the trace file

$ns flush-trace

close $nf
#Execute nam on the trace file

exec nam out.nam &

exit 0

}

16-Sep-13 9

Template

� The next line tells the simulator object ns to
execute the 'finish' procedure after 5.0
seconds of simulation time. seconds of simulation time.

$ns at 5.0 "finish"

� The last line finally starts the simulation.

$ns run

16-Sep-13 10

Network Links and Nodes

� The way to define a node is

set n0 [$ns node]

� Referring to the above node is written as $n0� Referring to the above node is written as $n0

� Links connecting nodes can be done as

$ns duplex-link $n0 $n1 1Mb 10ms DropTail

� Drop Tail, is a simple queue management
algorithm used by Internet routers to decide when
to drop packets

16-Sep-13 11

Example 1
#Create a simulator object

set ns [new Simulator]

#Open the nam trace file

set nf [open out.nam w]

$ns namtrace-all $nf

#Define a 'finish' procedure

set n0 [$ns node]
set n1 [$ns node]
set n2 [$ns node]
set n3 [$ns node]
$ns duplex-link $n0 $n2 1Mb 10ms DropTail
$ns duplex-link $n1 $n2 1Mb 10ms DropTail
$ns duplex-link $n3 $n2 1Mb 10ms DropTail

#Define a 'finish' procedure

proc finish {} {

global ns nf

$ns flush-trace

#Close the trace file

close $nf

#Execute nam on the trace file

exec nam out.nam &

exit 0

} 16-Sep-13 12

$ns duplex-link $n3 $n2 1Mb 10ms DropTail

$ns duplex-link-op $n0 $n2 orient right-down
$ns duplex-link-op $n1 $n2 orient right-up
$ns duplex-link-op $n2 $n3 orient right

#Call the finish procedure after 5 seconds simulation time
$ns at 5.0 "finish"

#Run the simulation
$ns run

Example 1

16-Sep-13 13

Agents

� After designing the topology make traffic flow between them

� Therefore define routing, agents (protocols), and applications

with respect to the topology.

� Define a TCP agent as� Define a TCP agent as

set tcp [new Agent/TCP]

� Attach a node with the agent

� attach-agent� used to connect different layer components

$ns attach-agent $n0 $tcp

16-Sep-13 14

Connect

� connect� Used to connect same layer
components

� Connect command used for a connection � Connect command used for a connection
between source and destination

$ns connect $tcp1 $tcp2

16-Sep-13 15

Application

� attach-agent� used to connect different
layer components

� Attaching an application � Attaching an application

set ftp [new Application/FTP]

$ftp attach-agent $tcp1

16-Sep-13 16

Scheduling Events

� The Tcl script defines when an event should
occur

$ns at <time> <event>$ns at <time> <event>

$ns at 0.5 "$ftp start"

16-Sep-13 17

Example 2

#Create a simulator object

set ns [new Simulator]

#Open the nam trace file

set nf [open out.nam w]

#Define a 'finish' procedure

proc finish {} {

global ns nf

$ns flush-trace

#Close the trace file
set nf [open out.nam w]

$ns namtrace-all $nf

16-Sep-13 18

#Close the trace file

close $nf

#Execute nam on the trace file

exec nam out.nam &

exit 0

}

Example 2

#Create two nodes

set n0 [$ns node]

set n1 [$ns node]

#Create a duplex link between the nodes#Create a duplex link between the nodes

$ns duplex-link $n0 $n1 1Mb 10ms DropTail

#Create a UDP agent and attach it to node n0

set udp0 [new Agent/UDP]

$ns attach-agent $n0 $udp0
16-Sep-13

19

Example 2

Create a CBR traffic source and attach it to udp0

set cbr0 [new Application/Traffic/CBR]

$cbr0 set packetSize_ 512

$cbr0 set interval_ 0.005$cbr0 set interval_ 0.005

$cbr0 attach-agent $udp0

#Create a Null agent (a traffic sink) and attach it to
node n1

set null0 [new Agent/Null]

$ns attach-agent $n1 $null0
16-Sep-13 20

Example 2
#Connect the traffic source with the traffic sink

$ns connect $udp0 $null0

#Schedule events for the CBR agent

$ns at 0.5 "$cbr0 start"$ns at 0.5 "$cbr0 start"

$ns at 4.5 "$cbr0 stop"

#Call the finish procedure after 5 seconds of simulation time

$ns at 5.0 "finish"

#Run the simulation

$ns run

16-Sep-13 21

Example 2

16-Sep-13 22

