I:Network Simulator 2 (NS2)

[Introduction

Simply an event driven simulation tool

Proved useful in studying the dynamic
nature of communication networks

Simulation of wired as well as wireless
network functions and protocols

16-Sep-13

[Basic Architecture

ns executable command

Takes on input argument, the name of a Tcl
(Tool Command Language) simulation
scripting file.

A simulation trace file i1s created, and is used
to plot graph and/or to create animation

16-Sep-13

Basic Architecture Cont...

Tcl / mulatmn TelCL /S mulat% Simulation
Simulation Objects Objects Trace
Script \-b——* ———/ File
++

= OTecl =

%_* NS2 Shell Executable Command (ns) —» \:=-_:\|

J=) =
I____Jt_ii_l oA ___
r NAM | Xgraph |

' (Animation) | | (Plotting) |

Mo s e — o i] B — o —)

16-Sep-13

[Basic Architecture Cont...

NS2 consists of two key languages:

O C++ which defines the internal mechanism (i.e., a

backend) of the simulation objects

O Object-oriented Tool Command Language (OT'cl)

Il

Il

which sets up simulation by assembling and
configuring the objects as well as scheduling discrete
events (l.e., a front end)

I'he C++ and the OTcl are linked together using

['clCL(Tcl With Classes)

16-Sep-13 5

[Why Two Languages?

OTcl to create and configure a network

C++ to run simulation

Use OTcl

O For configuration, setup, or one time simulation

O To run simulation with existing NS2 modules.

Use C++
O When dealing with a packet
O When modifying existing NS2 modules

16-Sep-13

The first Tcl script

Develop a T'cl script for ns which simulates
a simple topology

How to set up nodes and links

How to send data from one node to another

How to monitor a queue and how to start
nam from Tcl script to visualize the
simulation.

16-Sep-13 7

[Template

Can write Tcl scripts in any text editor like joe or emacs
Name the first example 'examplel.tcl'.
First step is to create a simulator object
set ns [new Simulator]
Open a file for writing the nam trace data
set nf [open out.nam w]
$ns namtrace-all $nf

The first line opens the file 'out.nam' for writing and returns file
handle 'nf'.

In The second line, the simulator object ns writes all simulation

data relevant for nam into the file out.nam.
16-Sep-13

Template

The next step is to add a 'finish' procedure that
closes the trace file and starts nam
proc finish { } {
global ns nf
#Close the trace file
$ns flush-trace

close $nf
H#Execute nam on the trace file

exec nam out.nam &
exit 0

16-Sep-13

[Template

The next line tells the simulator object ns to

execute the 'finish' procedure after 5.0
seconds of simulation time.

$ns at 5.0 "finish"

The last line finally starts the simulation.

$ns run

16-Sep-13 10

[Network Links and Nodes

The way to define a node is

set n0 [$ns node]
Referring to the above node is written as $n0
Links connecting nodes can be done as

$ns duplex-link $n0 $nl1 1IMb 10ms DropTail

Drop Tail, 1s a simple queue management
algorithm used by Internet routers to decide when
to drop packets

16-Sep-13 11

[Example 1

#Create a simulator object set n0 [$ns node]
set nl [$ns node]

set n2 [$ns node]
set n3 [$ns node]
$ns duplex-link $n0 $n2 TMb 10ms DropTail
$ns duplex-link $nl $n2 TMb 10ms DropTail
$ns duplex-link $n3 $n2 TMb 10ms DropTail

set ns [new Simulator]
#Open the nam trace file

set nf [open out.nam w]|

$ns namtrace-all $nf
#Define a 'finish' procedure
proc finish {} {

global ns nf $ns duplex-link-op $n0 $n2 orient right-down

$ns flush-trace $ns duplex-link-op $nl $n2 orient right-up

#Close the trace file $ns duplex-link-op $n2 $n3 orient right

close $nf #Call the finish procedure after 5 seconds simulation time
H#Execute nam on the trace file $ns at 5.0 "finish"

exec nam out.nam & #Run the simulation

exit 0 Sns run

} 16-Sep-13 12

[Example 1

N

[Agents]

After designing the topology make traffic flow between them

Therefore define routing, agents (protocols), and applications
with respect to the topology.

Detine a TCP agent as

set tcp [new Agent/TCP]

Attach a node with the agent

attach-agent = used to connect different layer components

$ns attach-agent $n0 $tcp

16-Sep-13 14

[Connect

connect =2 Used to connect same layer
components

Connect command used for a connection
between source and destination

$ns connect $tcpl $tcp2

16-Sep-13

15

[Application

attach-agent = used to connect different
layer components

Attaching an application
set ftp [new Application/FTDP]
$ftp attach-agent $tcpl

16-Sep-13

16

[Scheduling Events

The Tcl script defines when an event should
occur

$ns at <time> <event>

$ns at 0.5 "$ftp start"

16-Sep-13 17

[Example 2

#Create a simulator object
set ns [new Simulatot]
#Open the nam trace file
set nf [open out.nam w]

$ns namtrace-all $nf

16-Sep-13

#Define a 'finish' procedure
proc finish {} {

global ns nf

$ns flush-trace

#Close the trace file

close $nf

#HExecute nam on the trace file
exec nam out.nam &

exit O

)

18

[Example 2]

#Create two nodes
set n0 [$ns node]

set nl [$ns node]

#Create a duplex link between the nodes
$ns duplex-link $n0 $nl1 1Mb 10ms DropTail

#Create a UDP agent and attach it to node n0
set udp0 [new Agent/UDP]
$ns attach-agent $n0 FudpO

16-Sep-13
19

[Example 2]

Create a2 CBR traffic source and attach it to udp0
set cbr0 [new Application/Traffic/CBR]
$cbr0 set packetSize_ 512

&5

cbr0 set interval 0.005

&5

cbr0 attach-agent $udp0

#Create a Null agent (a traffic sink) and attach it to
node nl
set null0 [new Agent/Null]
Pns attach-agent $nl1 $null0

16-Sep-13 20

[Example 2]

#Connect the traffic source with the traffic sink
$ns connect Fudp0 $nullO
#Schedule events for the CBR agent
$ns at 0.5 "$cbrO start"
$ns at 4.5 "§cbr0 stop”
#Call the finish procedure after 5 seconds of simulation time

$ns at 5.0 "finish"

H#Run the simulation

$ns run

16-Sep-13 21

[Example 2

