
Software Testing

Outline

• Regression testing

• Unit testing- unit test consideration, procedure, example
using JUnit tool

• Integration testing – top down, bottom up, regression
testing, smoke testing, strategic options, integration test
work productswork products

• Validation testing - Validation Criteria section, configuration
review, alpha and beta testing

• System testing – Recovery, security, stress, performance,
deployment testing

• Debugging – The debugging process, psychological
considerations, debugging strategies, correcting the errors.

Regression testing

• Regression testing is the re-execution of some subset of tests that have already

been tested, to ensure that a newly added module have not propagated

unintended side effects.

• Regression testing helps to ensure that changes do not introduce unintended

behavior or additional errors.

• Regression testing may be conducted manually, or using automated

capture/playback tools. capture/playback tools.

• The regression test suite contains three different classes of test cases:

– A representative sample of tests that will exercise all software functions.

– Additional tests that focus on software functions that are likely to be affected

by the change.

– Tests that focus on the software components that have been changed.

• Regression test suite should be designed to include only those tests that address

one or more classes of errors in each of the major program functions.

Unit testing
• Unit testing focuses verification effort on the smallest unit of software

design—the software component or module.

• It establishes to uncover errors within the boundary of the module.

• The unit test focuses on the internal processing logic and data
structures within the boundaries of a component.

• This type of testing can be conducted in parallel for multiple
components.

• Unit-test considerations. The following are exercised during this test.
– Module interface

– Local data structures – Local data structures

– All independent paths

– Boundary conditions

– All error-handling paths

– Data flow across

– Local data structures

• Among the potential errors that should be tested when error handling
is evaluated are:

– (1) error description is unintelligible,

– (2) error noted does not correspond to error encountered,

– (3) error condition causes system intervention prior to error handling,

– (4) exception-condition processing is incorrect,

– (5) error description does not provide enough information to assist in the
location of the cause of the error

Fig. Unit test

Unit testing (Contd..)

• Unit-test procedures.

• Driver and/or stub software must often be
developed for each unit test.

• A driver is nothing more than a “main program” that
accepts test case data, passes such data to the
component (to be tested), and prints relevant
results.

• Stubs or “dummy subprogram” serve to replace • Stubs or “dummy subprogram” serve to replace
modules that are subordinate (invoked by) the
component to be tested. May do minimal data
manipulation, prints verification of entry, and returns
control to the module undergoing testing.

• Drivers and stubs represent testing “overhead.” This
software is not delivered with the final software
product.

• Unit testing is simplified when a component with
high cohesion is designed.

Fig. Unit test environment

Unit testing (Contd..)
• Unit test example using JUnit tool : The class to test the concatenate() method:

• The assertEquals() method is called to do the actual testing. In this method we compare the output

of the called method (concatenate()) with the expected output

– If the two values are equal, it is normal.

– If the two values are not equal, an exception is thrown, and the test method stops executing here. – If the two values are not equal, an exception is thrown, and the test method stops executing here.

Integration Testing
• Integration testing is a systematic technique for

constructing the software architecture while at the same
time conducting tests to uncover errors associated with
interfacing.

• The objective of integration testing is to take unit-tested
components and build a program structure that has been
dictated by design.dictated by design.

• Number of different incremental integration strategies:
– Top down

– Bottom up

– Regression testing

– Smoke testing

– Strategic options

– Integration test work products

Integration Testing(Contd..)
• Top-down integration testing is an incremental approach to

construction of the software architecture.

• Modules are integrated into the structure in either a depth-first

or breadth-first manner.

• The integration process is performed in a series of five steps:

– The main control module is used as a test driver and

stubs are substituted for all components directly

subordinate to the main control module.

– Depending on the integration approach selected (i.e.,

depth or breadth first), subordinate stubs are replaced

one at a time with actual components.

– Tests are conducted as each component is integrated.

– On completion of each set of tests, another stub is

• Bottom-up integration testing, begins construction and

testing with atomic modules.

• A bottom-up integration strategy may be implemented

with the following steps:

— Low-level components are combined into clusters

(sometimes called builds) that perform a specific

software subfunction.

— A driver (a control program for testing) is written

to coordinate test case input and output.

— The cluster is tested.

— Drivers are removed and clusters are combined – On completion of each set of tests, another stub is

replaced with the real component.

– Regression testing may be conducted to ensure that new

errors have not been introduced.

Fig. Top down integration testing

— Drivers are removed and clusters are combined

moving upward in the program structure.

Fig. Bottom up integration testing

Integration Testing(Contd..)
• Smoke testing is an integration testing approach

that is commonly used when product software is
developed. The integration approach may be top
down or bottom up

• It is designed for time-critical projects, allowing the
software team to assess the project on a frequent
basis.

• Smoke-testing approach encompasses the
following activities:

– Software components that have been translated into
code are integrated into a build. A build includes all
data files, libraries, reusable modules, and
engineered components that are required to
implement one or more product functions.

• Selection of an integration strategy depends
upon software characteristics and,
sometimes, project schedule. In general, a
combined approach (sometimes called
sandwich testing) that uses top-down tests
for upper levels of the program structure,
coupled with bottom-up tests for
subordinate levels may be the best
compromise.

• As integration testing is conducted, the
tester should identify critical modules.

• A critical module has one or more of the
following characteristics:

– (1) addresses several software requirements,

– (2) has a high level of control (resides
relatively high in the program structure), implement one or more product functions.

– A series of tests is designed to expose errors that will
keep the build from properly performing its function.

– The build is integrated with other builds, and the
entire product (in its current form) is smoke tested
daily.

• Smoke testing provides a number of benefits when
it is applied on complex, time critical software
projects:

– Integration risk is minimized, the quality of the end
product is improved, Error diagnosis and correction
are simplified, Progress is easier to assess.

– (2) has a high level of control (resides
relatively high in the program structure),

– (3) is complex or error prone

– (4) has definite performance requirements.

• Critical modules should be tested as early as
is possible.

• In addition, regression tests should focus on
critical module function.

• Integration test work products. An overall plan for integration of the software and
a description of specific tests is documented in a Test Specification. Test
specification incorporates a test plan and a test procedure.

Validation testing
• Validation testing begins at the culmination of integration testing.

• Validation testing succeeds when software functions in a manner that can
be reasonably expected by the customer.

• Validation Criteria section that forms the basis for a validation-testing
approach.

• Software validation is achieved through a series of tests that
demonstrate conformity with requirements.

• After each validation test case has been conducted, one of two
possible conditions exists:

– (1) The function or performance characteristic conforms to specification
and is accepted

• Configuration review –
element of the validation
process.

• The intent of the review is
to ensure that all elements
of the software
configuration have been and is accepted

– (2) a deviation from specification is uncovered and a deficiency list is
created.

• Deviations or errors discovered at this stage in a project can rarely be
corrected prior to scheduled delivery.

configuration have been
properly developed, are
cataloged, and have the
necessary detail for
maintenance activities.

• Alpha testing –

• The alpha test is conducted at the developer’s site by a representative group of end users.

• It record errors and usage problems.

• Alpha tests are conducted in a controlled environment.

• Beta testing (also called customer acceptance testing)

• The beta test is conducted at one or more end-user sites.

• The customer records all problems (real or imagined) that are encountered during beta testing and reports
these to the developer at regular intervals.

• The customer performs a series of specific tests in an attempt to uncover errors before accepting the
software from the developer

System testing
• System testing is actually a series of different tests whose primary purpose is to fully exercise the

computer-based system.

• The types of system tests for software-based systems are Recovery Testing, Security testing, Stress
testing, Performance testing, and Deployment testing.

• Recovery testing : Test that forces the software to fail in a variety of ways and verifies that recovery
is properly performed. If recovery is automatic (performed by the system itself), reinitialization,
checkpointing mechanisms, data recovery, and restart are evaluated for correctness. If recovery
requires human intervention, the mean-time-to-repair (MTTR) is evaluated to determine whether it
is within acceptable limits.

• Security testing attempts to verify that protection mechanisms built into a system. The tester plays
the role(s) of the individual who desires to penetrate the system The tester may attempt to acquire
passwords through external clerical means; may attack the system with custom software designed
to break down any defenses that have been constructed; may overwhelm the system, thereby to break down any defenses that have been constructed; may overwhelm the system, thereby
denying service to others; may purposely cause system errors, hoping to penetrate during recovery;
may browse through insecure data, hoping to find the key to system entry.

• Stress testing : Executes a system resources in abnormal quantity, frequency, or volume. For
example, (1) special tests may be designed that generate ten interrupts per second, when one or
two is the average rate, (2) input data rates may be increased by an order of magnitude to
determine how input functions will respond, (3) test cases that require maximum memory or other
resources are executed, (4) test cases that may cause thrashing in a virtual operating system are
designed, (5) test cases that may cause excessive hunting for disk-resident data are created.

• Performance testing : Test the run-time performance of software. Measure resource utilization
(e.g., processor cycles), monitor execution intervals, log events (e.g., interrupts), and sample
machine states on a regular basis. The tester can uncover situations that lead to degradation and
possible system failure.

• Deployment testing : Deployment or configuration testing, exercises the software in each
environment in which it is to operate. Examines all installation procedures and specialized
installation software (e.g., “installers”) that will be used by customers.

Debugging

• Debugging process : Debugging process begins with the execution of a test case. Results are assessed and
a lack of correspondence between expected and actual performance is encountered. The debugging
process will usually have one of two outcomes: (1) the cause will be found and corrected or (2) the cause
will not be found.

Debugging occurs as a consequence of successful testing. That is, when a test case

uncovers an error, debugging is the process that results in the removal of the error.

• Psychological Considerations : debugging prowess is an innate human trait. Some people are good
at it and others aren’t. Although experimental evidence on debugging is open to many
interpretations, large variances in debugging ability have been reported for programmers with the
same education and experience.

• Debugging Strategies : Debug is to find and correct the cause of a software error or defect. three
debugging strategies have been proposed (1) brute force, (2) backtracking, and (3) cause
elimination. Each of these strategies can be conducted manually, but modern debugging tools can
make the process much more effective.

• Correcting the Error : Correction of a bug can introduce other errors and therefore do more harm
than good. Three simple questions to ask before making the “correction”: Is the cause of the bug
reproduced in another part of the program? What “next bug” might be introduced by the fix I’m
about to make? What could we have done to prevent this bug in the first place?

Fig. The Debugging process

