
White box testing

Outline

• White box testing
– Why to derive test cases?

– White box testing techniques

• Basic path testing
– Flow graph notation

– Independent program path– Independent program path

– Deriving test cases

– Graph matrices

• Control structure testing
– Condition testing

– Data flow testing

– Loop testing : simple loops, concatenated loops, nested loops,
and unstructured loops.

White box testing

• White-box testing is a test-case design philosophy that
uses the control structure to derive test cases.

• Using white-box testing methods, derive test cases that
– (1) guarantee that all independent paths within a module

have been exercised at least once

– (2) exercise all logical decisions on their true and false – (2) exercise all logical decisions on their true and false
sides

– (3) execute all loops at their boundaries and within their
operational bounds

– (4) exercise internal data structures to ensure their validity.

• White box testing techniques :
– Basic path testing

– Control structure testing

Basis path testing

• Basis path testing is a white-box testing technique
first proposed by Tom McCabe.

• Test cases derived are guaranteed to execute
every statement in the program at least one time
during testing. during testing.

• Various techniques explained in this testing are as
follows.
– Flow graph notation

– Independent program path

– Deriving test cases

– Graph matrices

Basis path testing (Contd..)
• Flow graph notation : A flow graph

should be drawn only when the logical
structure of a component is complex.

• The flow graph allows to trace program
paths more readily.

• When compound conditions are

encountered in a procedural

design, the generation of a flow design, the generation of a flow

graph becomes slightly more

complicated.

• A compound condition occurs

when one or more Boolean

operators (logical OR, AND, NAND,

NOR) is present in a conditional

statement.

Basis path testing (Contd..)
• Independent program path : An independent path is any path through the program that introduces

at least one new set of processing statements or a new condition.

• Cyclomatic complexity is a quantitative measure of the logical complexity of a program.

• The value for cyclomatic complexity defines the number of independent paths in a program.

• It provides the number of tests that must be conducted to ensure that all statements have been
executed at least once.

• Cyclomatic complexity V(G) for a flow graph G is defined as

V(G) = E - N + 2

where E is the number of flow graph edges and N is the number of flow graph nodes.

• V(G) = 11 edges - 9 nodes + 2 = 4.

• 4 number of tests that must be designed and executed to guarantee coverage of

all program statements.

Basis path testing (Contd..)

• Deriving test cases : The
following steps can be
applied to derive the basis
set:

• 1. Using the design or code
as a foundation, draw a
corresponding flow graph.

• 2. Determine the
3. Determine a basis set of linearly

• 2. Determine the
cyclomatic complexity of
the resultant flow graph.

• 3. Determine a basis set of
linearly independent
paths.

• 4. Prepare test cases that
will force execution of
each path in the basis set.

3. Determine a basis set of linearly

independent paths. Six paths identified

are :

Path 1: 1-2-10-11-13

Path 2: 1-2-10-12-13

Path 3: 1-2-3-10-11-13

Path 4: 1-2-3-4-5-8-9-2-. . .

Path 5: 1-2-3-4-5-6-8-9-2-. . .

Path 6: 1-2-3-4-5-6-7-8-9-2-. . .

In this case, nodes 2, 3, 5, 6, and 10 are

predicate nodes.

Basis path testing (Contd..)

• Graph matrices : A data structure, called a graph
matrix, can be quite useful for developing a
software tool that assists in basis path testing.

• The graph matrix is nothing more than a tabular
representation of a flow graph.representation of a flow graph.

• A powerful tool for evaluating program control
structure during testing.

• Using these techniques, the analysis required to
design test cases can be partially or fully
automated.

Control structure testing
• Control structure testing broaden test coverage and

improve the quality of white-box testing.

• Condition testing : tests the logical conditions
contained in a program module.

E1 <relational operator> E2

where E1 and E2 are arithmetic expression.where E1 and E2 are arithmetic expression.

• This testing tests the boolean condition, compound
condition, boolean expression, relational expression,
arithmetic expression.

• This test ensures all the following errors are tested :
– Boolean operator errors, Boolean variable errors, Boolean

parenthesis errors, relational operator errors, and
arithmetic expression errors.

Control structure testing (contd..)
• Data flow testing : The data flow testing method selects test paths

of a program according to the locations of definitions and uses of
variables in the program.

• For a statement with S as its statement number,

DEF(S) {X | statement S contains a definition of X}

USE(S) {X | statement S contains a use of X}

• If statement S is an if or loop statement, its DEF set is empty and its • If statement S is an if or loop statement, its DEF set is empty and its
USE set is based on the condition of statement S.

• A definition-use (DU) chain of variable X is of the form [X, S, S’],
where S and S’ are statement numbers, X is in DEF(S) and USE(S’),
and the definition of X in statement S is live at statement S’.

• Data flow testing strategy is that every DU chain be covered at least
once.

Control flow structure(contd..)
• Loop testing : Loop testing is a white-box testing technique that

focuses exclusively on the four different classes of loops, simple
loops, concatenated loops, nested loops, and unstructured loops.

Simple loops The following set of tests can be
applied to simple loops, where n is the
maximum number of allowable passes
through the loop.
1. Skip the loop entirely.
2. Only one pass through the loop.
3. Two passes through the loop.
4. m passes through the loop where m < n.
5. n - 1, n, n + 1 passes through the loop.
4. m passes through the loop where m < n.
5. n - 1, n, n + 1 passes through the loop.

Nested loop : The number of possible tests would
grow geometrically as the level of nesting
increases. The following set of tests can be applied:
1. Start at the innermost loop. Set all other loops
to minimum values.
2. Conduct simple loop tests for the innermost
loop while holding the outer loops at their
minimum iteration parameter (e.g., loop counter)
values. Add other tests for out-of-range or
excluded values.
3. Work outward, conducting tests for the next
loop, but keeping all other outer loops at minimum
values and other nested loops to “typical” values.
4. Continue until all loops have been tested.

Concatenated loops : concatenated loops

can be tested using the approach defined

for simple loops, if each of the loops is

independent of the other.

However, if two loops are concatenated,

the approach applied to nested loops is

recommended.

