DMA Controller – 8257/8237

Direct memory access

- Direct memory access (DMA) is a process in which an external device takes over the control of system bus from the CPU.
- DMA is for high-speed data transfer from/to mass storage peripherals, e.g. harddisk drive, magnetic tape, CD-ROM, and sometimes video controllers.
- The basic idea of DMA is to transfer blocks of data directly between memory and peripherals.
- The data don't go through the microprocessor but the data bus is occupied.

Basic process of DMA – Minimum Mode

- The **HOLD** and **HLDA** pins are used to receive and acknowledge the hold request respectively.
- Normally the CPU has full control of the system bus.
- In a DMA operation, the peripheral takes over bus control temporarily.

Basic process of DMA – Maximum Mode

- The **RQ/GT1** and **RQ/GT0** pins are used to issue DMA request and receive acknowledge signals.
- Sequence of events of a typical DMA process:
 - 1. Peripheral asserts one of the request pins, e.g. RQ/GT1 or RQ/GT0 (RQ/GT0 has higher priority)
 - 2. 8086 completes its current bus cycle and enters into a HOLD state.
 - 3. 8086 grants the right of bus control by asserting a grant signal via the same pin as the request signal.
 - 4. DMA operation starts.
 - 5. Upon completion of the DMA operation, the peripheral asserts the request/grant pin again to relinquish bus control.

DMA controller

- A DMA controller interfaces with several peripherals that may request DMA.
- The controller decides the priority of simultaneous DMA requests communicates with the peripheral and the CPU, and provides memory addresses for data transfer.
- DMA controller commonly used with 8086 is the 8257/8237 programmable device.
- The 8257/8237 is a 4-channel device.
- Each channel is dedicated to a specific peripheral device and capable of addressing 64 K bytes section of memory.

8237 - DMA Controller

Block Diagram

8237 Registers

- 1. Current word register
- 2. Command register
- 3. Mode register
- 4. Request register
- 5. Mask register
- 6. Status register
- 7. Temporary register
- 8. Current address register

1.Current address register

- One 16-bit register for each channel
- Holds address for the current DMA transfer

2.Current word register

- Keeps the byte count
- Generates terminal count (TC) signal when the count goes from zero to FFFH

3.Command register

• Used to program 8257

8237 Registers

4.Mode register

- Each channel can be programmed to
 - Read or write
 - Autoincrement or autodecrement the address
 - Autoinitialize the channel

5.Request register

• For software-initiated DMA

6.Mask register

• Used to disable a specific channel

7.Status register

8. Temporary register

• Used for memory-to-memory transfers

Types of data transfer

• 8237 supports four types of data transfer

1. Single cycle transfer

- Only single transfer takes place
- Useful for slow devices

2. Block transfer mode

Transfers data until TC is generated or external EOP signal is received

3. Demand transfer mode

- Similar to the block transfer mode
- In addition to TC and EOP, transfer can be terminated by deactivating DREQ signal

4. Cascade mode

• Useful to expand the number channels beyond four

Command Register

Request Register

Request Register 2 BIT NUMBER 6 5 4 3 0 1 Select Channel 0 00 Don't Care, 01Select Channel 1 Write Bits 4-7 10 Select Channel 2 All Ones, 11 Select Channel 3 Read Reset request bit 0 1 Set request bit

