I/O Processor-8089

By, S. Angel Deborah AP/CSE

I/O Processors

- I/O Processors handles all of the interactions between the I/O devices and the CPU.
- I/O Processors communicates with input and output devices through separate address, data, and control lines.
- This provides an independent pathway for the transfer of information between external devices and internal memory.
- Relieves the CPU of 'I/O device chores'

CPU Connection to I/O Devices

I/O Processors

- Communicate directly with all I/O devices
 - Fetch and execute its own instruction
 - IOP instructions are specifically designed to facilitate I/O transfer
 - DMAC must be set up entirely by the CPU
 - Designed to handle the details of I/O processing
- Used to address the problem of direct transfer after executing the necessary format conversion or other instructions
- In an IOP-based system, I/O devices can directly access the memory without intervention by the processor

I/O handled by microprocessor

- Microprocessors can transfer data with input/output port. Here microprocessor is required to set up and perform the actual transfer.
- For high speed data transfer CPU uses the DMA controller to transfer data.
- But microprocessor still needs to set up the device controller, initiate the DMA operation, and examine the post transfer status after the completion of each DMA operation.

I/O handled by IOP

- When I/O is handled by IOP, microprocessor can perform some other function at the time of I/O transfer. This increases the system speed.
- Example: 8089

Features of 8089

- An IOP can fetch and execute its own instructions.
- Instructions are specially designed for I/O processing.
- In addition to data transfer, 8089 can perform arithmetic and logic operations, branches, searching and translation.
- IOP does all work involved in I/O transfer including device setup, programmed I/O and DMA operation.
- IOP can transfer data from an 8-bit source to 16-bit destination and vice-versa.
- Communication between IOP and CPU is through memory based control blocks. CPU defines tasks in the control blocks to locate a program sequence, called a channel program.

Pin Diagram

(GND) VSS	$ _{1} \smile$	40	_'vcc
A14/D14	2	39	
A13/D13	з	38	A16/53
A12/D12	4	37	
A11/D11.	5	36	. A18/S5
A10/D10	6	35	A19/S6
A9/D9	7	34	ВНЕ
A8/D8	8	33	EXT 1
A7/D7	9	32	EXT 2
A6/D6	10 Intel	31	DRQ 1
A5/D5	11 8089	30	DRQ 2
A4/D4	12	29	LOCK
A3/D3	13	28	S2
A2/D2	14	27	S1
A1/D1	15	26	so
A0/D0	16	25	RQ/-GT
SINTR-1	17	24	- SEL
SINTR-2	18	23	CA
CLK	19	22	READY
(GND) VSS	20	21	RESET

Registers of 8089

- GA- Points to source
- GB- Points to destination
- GC-Used as base address of a 256 byte translation table.
- TP-Task pointer
- PP-Parameter pointer
- IX –Index register
- BC
- MC- contains the it pattern to be compared and a mask in bits 15 through 8
- CC-channel control
- PSW-Program status register

Channel control register

- Function control- b15 & b14
- Translation mode- b13
- Synchronization control-b12 & b11
- Source/ Destination indicator b10
- Lock control- b9
- Chaining control- b8
- Single transfer mode b7
- Termination control b0-b6

IOP Communication area

- SCPB(System Configuration pointer block)
 - It contains three words:
 - LS Byte specifies the width of system bus.
 - Two words store the offset and segment address of the location of the SCB.
- SCB
 - Offset and segment address of the beginning of two consecutive channel control blocks in the system space.
- CBs
 - CCW(channel Control word)
 - Busy(FF/00)
 - Parameter block's offset and segment address.

Three Forms of Commands

- Block transfer commands
 - Moves blocks data to IOP. Usually these instructions swap pages in and out of physical memory, and to load programs from disk memory.
- Arithmetic, logic, and Branch operations
 - IOP uses ALU instructions to manipulate the data so the process time for CPU is shorten.
- Control Command
 - Controls hardware.
 - Ex: rewind the tape on a tape drive or ejecting a CD from a drive.

Figure 11-8 Configuration involving both a coprocessor and an independent processor.

