
The 80x87 Math
CoprocessorCoprocessor

Why we need a math coprocessor?

• Using a general-purpose microprocessor such as the
8088/86 to perform mathematical functions such as
log, sine,and others is very time consuming,
not only for the CPU but also for programmers
writing such programs. writing such programs.

• In the absence of a math coprocessor, programmers
must write subroutines using 8088/86 instructions
for mathematical functions.

The Math Coprocessor: (Numeric Data
Processor (NDP))

• The 8086 performs integermath operations
• Floating pointoperations are needed, e.g. for Sqrt (X), sin

(x), etc.
• These are complex math operations that require large

registers, complex circuits, and large areas on the chip
• A general data processor avoids this much burden and • A general data processor avoids this much burden and

delegates such operations to a processor designed
specifically for this purpose -

• e.g. math coprocessor (8087) for the 8086
• The 8086 and the 8087 coprocessors operate in parallel and

share the busses and memory resources
• The 8086 marks floating point operations as ESC

instructions, will ignore them and 8087 will pick them up
and execute them

The 8087 Coprocessor: Organization
• CU and NEU units
• Eight 80-bit FP Registers
• Supports 68 FP (ESC)

instructions
• Speeds up 8086 performance

on FP operations by a factor
of 50-100 time

• 8087 Tracks activities Top of
the data

• 8087 Tracks activities
of the 8086 by monitrng:
- Bus status (S0-S2 bits)
- Queue status (QS0,1)
- Instruction being fetched
(to check if its an ESC
instruction)

• Synchronize with WAIT using
the BUSY-#TEST
signals

A stack of 8 x 80-bit
FP Registers

8086

Busy#Test

ST(0)

ST(7)

the data
Stack

8086 Maximum mode outputs for NDP Connection
• Bus Status Outputs S0-S2:

Status bits that encode the type
of the current bus cycle

• Bus Request/Grant Outputs RQ0/GT0:
Allow 8087 to request use of the bus,
e.g. for DMA memory access

• Queue Status Outputs QS1,QS0:

- For use by coprocessors that receive their instructions via ESC prefix.

Table 9-7

- For use by coprocessors that receive their instructions via ESC prefix.

- Allow the coprocessor to track the progress of an instruction through the 8086
queue and help it determine when to access the bus for the escape op-code and
operand.

- Indicate the status of the internal instruction queue as given in the table:

QS1 QS0
0 0 Queue is idle
0 1 First byte of opcode from queue
1 0 Queue is empty
1 1 Subsequent byte of opcode from queue

8087 pin diagrams

The following is description of the signal connection.

1. The 8086 and 8087 receive the same signals, CLK, READY, and RESET,
from the 8284. This ensures that they are synchronized.

2. S0, S1, and S2 are going from the 8086 or 8087 to the 8288, which allows
eitherof these two processors to provide the status signal to the 8288.

3. The Queue Status, QS1 and QS0, from the 8089 go to the 8087, allowing it
to know the status of the queue of the 8088 at any given time.

4. The TESTsignal to the 8086 comes from BUSY of the 8087.
By deactivating (going low) the BUSY signal, the 8087 informs the 8086 By deactivating (going low) the BUSY signal, the 8087 informs the 8086
that it finished execution of the instruction which it has been WAITing for.

5. RQ/GT1 (request/grant) of the 8088 is connected to RQ/GTO of the 8087,
allowing them to arbitrate mastery over the buses.
There are two sets of RQ/GT: RQ/GT1 and RQ/GTO . RQ/GT1 of the 8087
is not used and is connected to Vcc permanently.
This extra RQ/GT is provided in case there is a third microprocessor
connected to the local bus.

The following is description of the signal connection.

6. Both the 8086 and 8087 share buses ADO -AD7 and A8 -A19, allowing
either one to access memory.
Since the 8087 is designed for both the 8088 and 8086, signal BHE is
provided for the 8086 processor.
If the microprocessor used was an 8086, BHE from the 8086 is connected to
BHE of the 8087.

7. INT of the 8087 is an output signal indicating error conditions, also called
exceptions, such as divide by zero.Error conditions are given in the status
word. Assuming the bit for that error is not masked and an interrupt is word. Assuming the bit for that error is not masked and an interrupt is
enabled, whenever any of these errors occurs, the 8087 automatically
activates the INT pin by putting high on it.

8. The 8088, often called the host processor, must be connected in maximum
modeto be able to accommodate a coprocessor such as the 8087.

How the 8088 and 8087 work together in the IBM PC/XT

• Each gets a copy of the instructions as they are fetched from memory.

• Since all the instructions of the 8087have 9BH in the most significant
byte of the opcode, the 8088/86 ignores these instructions.

• In reality, 9BH is the opcode for the 8088/86 ESCAPEinstruction.

• Likewise, the 8087 ignores any opcode that lacks 9BH.

• It must be made clear that although both receive a copy of each
fetched opcode, only the 8088/86 can fetch opcodessince it is the fetched opcode, only the 8088/86 can fetch opcodessince it is the
only device that has the instruction pointer.

• Now one might ask how the 8088/86 makes sure it is not flooding the
8087 by fetching instructions for the coprocessor faster than the 8087
can process them.

• The first rule of working together is that the 8088/86 cannot fetch
another 8087 instruction until the 8087 has finished executionof the
present instruction.

How the 8088 and 8087 work together in the IBM PC/XT

• In addition, when the 8087 is executing an instruction, it activates the
BUSY pin automatically by putting high on it.

• This pin is connected to the TESTpin of the 8088/86.

• Next, the 8088/86 fetches the next instruction, which is a WAIT
instruction that has been inserted by the assembler, and executes it,
thereby going into an internal loop while continuously monitoring the thereby going into an internal loop while continuously monitoring the
TESTinput pinto see when this pin goes low.

• When the 8087 finishes execution of the present instruction, it pulls
down (low) the READY pin, indicating through the TESTpin to the
8088/86 that it can now send the next instruction to the 8087.

AD Before
Demuxing

The 8086 with an 8087 Coprocessor
8086 is operating in the MAX mode

Inputs common
with the 8086

Can interrupt
the 8086

Synchronization between 8086 & the 8087
Coprocessor

The assembler marks
all FP instructions as
ESC instructions having a
special range of opcodes.
The Coprocessor monitors
the 8086 bus activities and
Intercepts such instructions,
captures them for execution

WAIT instructions
can be used to halt the
8086 to ensure that the
8087 has finished a crucial
step,
e.g. storing a result in
memory.

Comparison of 8087 and 8086 Clock Times

In some cases the differences of run times is hours between
PCs with and withoutmath-coprocessor.

8087 Program

Other data formats of the 8087

• In addition to short real (single precision) and long real
(double precision) representations for real numbers, the
8087 also supports 16 , 32 , and 64 bit integers.

• They are referred to as
– word integers,

– short integers, and

– long integers,

• respectively, and are shown in Figure 20-1.
• These forms are sometimes referred to as signed integer

numbers.

• No decimal points are allowed in integers, in contrast to real
numbers, in which decimal points are allowed.

Different Data Representation of 8087

different data directives
• There are different directives to define the different

data types of the coprocessor.
They are as follows:
• DW (Define word) for word integer
• DD (Define double word) for short real (single

precision)precision)
& for short integer

• DQ (Define quad word) for long real (double
precision)

& for long integer
• DT (Define ten bytes) for packed decimal

& for temporary real

80x87 registers
• There are only 8 general-purpose registersin the 80x87.

• Rather than having different-size registers for different-size operands, all the
registers of the 8087 are 80 bits wide.

• Every time the 8087 loads an operand, it automatically converts it to this 80-bit
format.

• This gives uniformity to the registers and makes programming, as well as 8087
hardware design, much easier.

• Although these 8 registers have been numbered from 0 to 7, they are accessed like a
stack, meaning that a last-in-first-out policy is used.

• At any given time, the top of the stack is referred to as ST(0), or simply ST, and all
other registers, regardless of their number, are referred to according to their
positions compared to the top of the stack, ST.

• The programming examples below will demonstrate the use of registers in the 8087.

• Example 20-5 will show a complete Assembly language program using the 8087
coprocessor.

80x87 Assembly code and registers
1. All 80x87 mnemonics start with the letter “ f ” to distinguish them

from 80x86 instructions.

2. . Whenever a register is not identified specifically, ST [which is ST(0)]
is assumed automatically.

3. ST(0) is the top of the stack, ST(1) is one register below that, and
ST(2) is two registers below ST(0), and so on. In other words, for
register ST(m), the number in parentheses, m, has nothing to do with
the register number. There is a way to find out which register number, the register number. There is a way to find out which register number,
0 - 7, is ST(0), the top of the stack. .

How 8087 uses its registers

Reading an operand by the coprocessor
• Assume that the 8087 needs to read an operand. When the

8088/86 initiates the operand read cycle, the 8087 grabs the
20-bit address and saves it internally.

• If the operand is a single word (like a word integer), the
read cycle has been initiated and the word will come into
both processors.

• Only the 8087 will use the data; the 8088/86 will ignore it. • Only the 8087 will use the data; the 8088/86 will ignore it.
However, if the operand is 32 bits or longer, the 8087 will
take over the buses by sending a low pulse on its RQ/GTO
to the RQ/GT1 of the 8088/86

Reading an operand by the coprocessor
• The 8088/86 in turn will send back a low pulse through the

same pin, thereby allowing the 8087 to take over the buses.

• Remember, RQ/GT is a bidirectionalbus.

• When the 8087 takes over the buses, it will use them until it
brings in the last byte of the operand.

• It is only then that by activating RQ/GT (making it low), • It is only then that by activating RQ/GT (making it low),
control of the buses is given back to the 8088/86.

• For example, in the case of a DT operand, the 8087 has
control over the buses for the time needed to fetch all 10
bytes and then it gives back the buses.

Writing an operand by the coprocessor
• In the case of writing an operand by the coprocessor (e.g., FST data),

the 8088/86 initiates the write cycle, but the 8087 ignores it since the
8086 does not have the operand.

• This is called a dummy cycle.

• All the 8087 does during the dummy cycle is grab the address of the
first memory locationwhere the operand is to be stored and keep it
until the data is ready, and then it requests the use of the buses by
activating the RQ/GT pin. activating the RQ/GT pin.

• From then on, the process is the same as the read cycle, meaning that
it will use the buses until it writes the last byte of the operand.

• All the cases discussed so far have been taken care of by either the
assembler or the hardware and there was no need for the programmer
to be worried.

8087 status words

8087 control words

Pentium
• There are few changes as far as instructions and

registers are concerned from the 8087 to the math
processor inside the Pentium, except for a few new
instructions and much lower clock counts for
instruction execution.

• The new instructions introduced in the 80387 are • The new instructions introduced in the 80387 are
FSIN(sine), FCOS (cosine), FSINCOS (sine and
cosine), FPREMl (partial remainder), and FUCOM
and its variations.

