The 80x87 Math
Coprocessor

Why we need a math coprocessor?

e Using a general-purpose microprocessor such as the
8088/86 to perform mathematical functions such as
log, sine,and others Is very time consuming,
not only for the CPU but also for programmers

writing such program:s

* In the absence of a math coprocessor, programmers
must write subroutines using 8088/86 Iinstructions

for mathematical functions.

The Math Coprocessor: (Numeric Data
Processor (NDP))

The 8086 performstegermath operations

Floating pointoperations are needed, e.g. for Sqrt (X), sin
(X), etc.

These are complex math operations that requige lar
registers, complex circuits, and large areas ol

A general data processor avoids this much burdé
delegates such operations to a processor designed
specifically for this purpose -

e.g. math coprocessor (8087) for the 8086

The 8086 and the 8087 coprocessors operagieralleland
share the busses and memory resources

The 8086 marks floating point operationd=3C
Instructions, will ignore them and 8087 will pidkeim up
and execute them

The 8087 Coprocessor: Organization

............................
...

CU and NEU units - Corlrolunit (CU) Numeric execution unit (NEU)

Elght 80'b|t FP RGgISterS Control register

Supports 68 FP (ESC) st | ;[Boo St

instructions : j L=

Speeds up 8086 performance : | [tmete

on FP operations by a fa § = e module

of 50-100 time D 20 5

8087 Tracks activitie é e et v |
. : : ueu e data gisters | ¢

of the 8086 by monitrngg q. g : STtack \\ o)

- Bus statu$S0-S2 bits) : 5 3: i

- Queue status (QS0,1) —A:(:a‘”z}_ DT (¥

- Instruction being fetq |~ :° P | -l

(tO che(:k Ifits an ESC : A stack of 8 X 80-Dbit é:

mStrUCtlor_]) _ _ FP Registers oH__ 5

Synchronize with WAIT using ; § s ST

the BUSY-#TEST B0-bit wide stack :

signals 79 78 64 63 | 0.

S Exp. Fraction

8086 Maximum mode outputs for NDP Connection
e Bus Status Outputs SO-S2: Table 9-7

) 52 51 S0 Function
Status bits that encode the type 0 0 0 imemuetackontedos
of the current bus cycle 0 0 1 O
0 1 0 I/O write
. BusRequest/Grant Outputs RQO/GTO: T 0 0 Opeodetern
Allow 8087 to request use of the bus, LY o Memonete
1 1 1

Passive

e.g. for DMA memory access
 Queue Status Outputs QS1,Q0:
- For use by coprocessors that receive their instmgtvia ESC prefi;

- Allow the coprocessor to track the progress oiatruction through the 8086
gueue aénd help it determine when to access th&btise escape op-code and
operand.

- Indicate the status of the internal instructioewg as given in the table:

QS1 QSO
0 0 Queue is idle
0 1 First byte of opcodenfrqueue
1 0 Queue is empty
1 1 Subseguent byte of opdndm gueue

8087 pin diagrams

A14/D14 [
A13/D13 [
A12/D12 O
A11/D11
A10/D10
A9/D9
A8/D8
ATID7
A6/D6
AS5/D5
A4/D4
A3/D3
A2/D2
A1/D1

8087

0000000000040

Vss [~—

o ygugtduguyduydyguuyguyogy

Vee
A15/D15
A16/83
A17/S4
A18/S5
A19/S6
BHE/S7
RQ/GT1
INT
RQ/GTO
NC

NC

S2

S1

S0

Qso
Qs1
BUSY
READY
RESET

Figure 20-3. 8087 Pin Diagrams

The following Is description of the signal connection.

1. The 8086 and 8087 receive the same signals, RBADY, and RESET,
from the 8284 This ensures that they aenchronized

2. S0, S1, and S2 are going from the 8086 or 808lie 8288which allows
eitherof these two processorspoovide the status signal to the 8288

3. The Queue Status, QS1 and QSO, from the 8089 e 8087, allowing it
to know the status of the queue of the 8088 atgargn time.

4. The TESTsignal to the 8086 comes from BUSY of the 8087.
By deactivating (going low) the BUSY signal, the88dnforms the 808
that it finished execution of the instruction whiclhas been WAITIing for.

5. RQGT1 (request/grant) of the 8088 is connected td&ID of the 8087,
allowing them to arbitrate mastery over the buses.
There are two sets of RQ/GT: REI'1and RQGTO. RQGTI1 of the 8087
IS not used and is connected to Vcc permanently.
This extra RQ/GT is provided in case there is eltmicroprocessor
connected to the local bus.

The following Is description of the signal connection.

6. Both the 8086 and 8087 share buses ADO -AD7A&ndA19, allowing
either one to access memory.
Since the 8087 is designed for both the 8088 a6 ,8lgnal BHE is
provided for the 8086 processor.
If the microprocessor used was an 8086, BHE fromBI86 is connected to
BHE of the 8087.

7. INT of the 8087 is anutput signal indicating error conditigradso called
exceptionssuch as divide by zer&rror conditions are given in the status
word. Assuming the bit for that error is not masked an interrupt |
enabled, whenever any of these errors occurs,d@é 8utomatically
activates the INT pin by putting high on it.

8. The 8088, often called tli®st processor, must be connected in maximum
modeto be able to accommodate a coprocessor such 8987e

How the 8088 and 8087 work together in the IBM PC/XT

Each gets a copy of the instructions as they are fetched from memory

Since all thanstructions of the 808iave9BH in the most significant
byte of the opcode, the 8088/86 ignores these instructions.

In reality, 9BH is the opcode for the 80888 CAPEInstruction.
Likewise, the 8087 ignores any opcode that lacks 9BH.

It must be made clear that although both receive a copy of each
fetched opcodeonly the 8088/86 can fetch opco since it is the
only device thahas the instruction pointer

Now one might ask how the 8088/86 makes sure it is not flooding the
8087 by fetching instructions for the coprocessor faster than the 8087
can process them.

The first rule of working together is that the 8088¢&6not fetch
another 8087 instruction until the 8087 has finished execafidme
present instruction.

How the 8088 and 8087 work together in the IBM PC/XT

In addition,when the 8087 is executing an instruction, it activates the
BUSY pin automatically by putting high on it

This pin is connected to the TE®IN of the 8088/86.

Next, the 8088/86 fetches the next instruction, which is a WAIT
Instruction that has been inserted by the assembler, and executes it,
thereby going into an internal loop whcontinuously monitoring th
TESTIinput pinto see when this pin goes low.

When the 8087 finishes execution of the present instruction, it pulls
down (low) the READY pin, indicating through the TEBIh to the
8088/86 that it can now send the next instruction to the 8087.

sea Bl

MM
CLK pgpomempet CLE
HlH48
Clock —
generator =1 AEADY £2-50
I‘ 8086 AD1E-AD0
s RESET AlB-AlE
Resrt
T BHE
Ready AG/GT
TEST ost.oso| INTR
Busy

Inputs common
with the 8086

B roguessigrand

Faady

Prooeswr s181UE

Clock
Coprocessar
(such as Address/
et BOBT data

InTeFript requost

Can interrupt
the 8086

The 8086 with an 8087 Coprocessor
8086 is operating in the MAX mode

- S L]
Bwird
EI- =) contraller
% View [
O Contral
OT/R bus
ALE
5TE OE Ed
> B -
. - L',;;';“ Addres
Erigg
-y
KLr‘— - T
D}vcﬁ
/ ""'-.h BIBE |:]
Trarscemers
AD Befqr bus
Demuxih l
| Ty
INT
Programmable i
interrugt CR Hires
controllar

Synchronization between 8086 & the 8087

Coprocessor
8086,8088

The assembler marks

all FP instructions as

ESC instructions having a
special range of opcodes.

The Coprocessor monitors
the 8086 bus activities and
Intercepts such instructions,
captures them for execution

Copr oCeyson

Wake up the

S —

Momstor the
8086 o« BOBS

Sets BUSY
high

Dﬂ-c_t*w_ate the
host’s TEST pin and
execute the specifing

Execute the
BOBG mistructions

WAIT instructions

can be used to halt the
8086 to ensure that the Wske up the B0BS or BOEB
8087 has finished a crucial
step,

e.g. storing a result in
memory.

Lowers BUSY

Comparison of 8087 and 8086 Clock Times

In some cases the differences of run times Is hoeiseen
PCswith andwithout math-coprocessor.

Table 20-1: Comparison of 8087 and 8086 Clock Times

Approximate Execution Time (us) (5-MHz clock)

Instruction _ 8087 8086 Emulation

Multiply (single precision) 19 1,600
Multiply (double precision) | 27 2,100
Add 17 1,600
Divide (single precision) 39 3,200
Compare 9 1,300
Load (single precision) | | 9 1,700
Store (single precision) 18 1,200
Square root | 36 19,600
Tangent \ . 90 13,000
Exponentiation 100 17,100

- 8087 Program

Example 20-5 |
Write an 8087 program that loads three values for X, Y, and Z, adds them, and stores the result.
Solution:

finit :initialize the 8087 to start at the top of stack

fid X ;load X into ST(0). now ST(0)=X

fid Y ;load Y into ST(0). now ST(0)=Y and ST(1)=X

fid Z ;load Z into ST(0). now ST(0)=Z,ST(1)=Y,ST(2)=X

fadd ST(1) ;addY to Z and save the resuilt in ST(0)
fadd ST(2) ;add X to (Y+Z) and save it in ST(0)
fst sum ;store ST(0) in memory location called sum.

Now the same program can be written as follows:

finit

fld X :load x, now ST(0) =x

fld Y sload y, now ST(0)=y, ST(1) =x

fld Z ;load z, now ST(0)=z, ST(1)=y, ST(2)=x
fadd ;adds y to z

fadd ST(Q2) ;adds x to (y + z)

fst sum

Program 20-2 shows the actual MASM code and execution. Figure 20-2 shows the registers.

Other data formats of the 8087

In addition to short real (single precision) andd real
(double precision) representations for real numhibes
8087also supports 16 , 32, and 64 bit integers
They are referred to as

— word integers,

— short integers, and

— long integers,
respectively, and are shown in Figure 20-1.

These forms are sometimes referred tagsed integer
numbers.

No decimal points are allowed In integers, in casitto real
numbers, in which decimal points are allowed.

Different Data Representation of 8087

Word Integer approx. range: -32768 <= x <= +32767
15 (¢]

S | magnitude

Short Integer approx. range: -2 x 10° <= x <= +2 x 10°
31

S | magnitude

Long Integer approx. range: -9x10'8<=x <=+9x10"®
63

S | magnitude

Packed Decimal approx. range: -99..99 <= x <= +89..99
79 72

S X magnitude: d17 to dO

Short Real approx. range: 0, 1.2 x 1038 <= |x] <= + 3.4x 1038
31 23 22 0

S | b. exp| significand

Long Real approx. range: 0,2.3x 107208 <=|x] <=+1.7x 1038
63 52 51

'S b. exp] significand

Temporary Real approx. range: 0, 3.4 x 1074932 <= x| <= +1.1 x 104932
79 64 63 62

I S l b. expl I | significand

Figure 20-1. 80x87 Data Formats

different data directives

* There are different directives to define the adfe
data types of the coprocessor.

They are as follows:
« DW (Define word) for word integer

DD (Define double word) for short reaiigle
precisior)
& for short integer

 DQ (Define quad word) for long realquble
precisior)
& for long integer

DT (Define ten bytes) for packed decimal
& for temporary real

80x87 registers

There are only general-purpose registansthe 80x87.

Rather than having different-size registers fdiedent-size operandas]l the
registers of the 8087 are 80 bits wide

Every time the 8087 loads an operand, it autorabyiconverts it to this 80-bit
format.

This gives uniformity to the registers and makesgypamming, as well as 8087
hardware design, much easier.

Although these 8 registers have beembered from 0 to, they areaccessed like a
stack meaning that a last-in-first-out policy is used.

At any given time, the top of the stack is refdrt@ as ST(0), or simply ST, and all
other registers, regardless of their number, degrexl to according to their
positions compared to the top of the stack, ST.

The programming examples below will demonstrageube of registers in the 8087.

Example 20-5 will show a complete Assembly langupgbgram using the 8087
COprocessor.

80x87 Assembly code and registers

1. All 80x87 mnemonics start with the lettefr™to distinguish them
from 80x86 instructions.

2. . Whenever a register is not identified specifically, ST [whi@iTifO)]
IS assumed automatically.

3. ST(0) is the top of the stack, ST(1) is one register below that, and
ST(2) is two registers below ST(0), and so on. In other words, for
register ST(m), the number in parentheses, m, has nothing to do with
the register number. There is a way to find out which register nu
0-7,is ST(0), the top of the stack. .

How 8087 uses Its registers

000
001
010
011

100
101
110
1M1

000
001
010
0N

100
101
110
M

(@) FINIT

Y +Z

Y

X

(e) FADD ST(0),ST(1)

ST(0)
ST(1)
ST(2)

X

(b) FLD X

X+Y+2

Y

X

ST(0)

ST(0)
ST(1)
ST(2)

(f) FADD ST(0),ST(2)

Y

X

(©FLDY

X+Y+Z

Y

X

ST(0)
ST(1)

ST(0)
ST(1)
ST(2)

(@ FSTSUM gr

Z ST(0)

Y ST(1)

X | 8sT()
(d)FLD Z

Y ST(0)

X ST(1)
(g) FSTP SUM

Figure 20-2. Stack Diagram for Example 20-5

Reading an operand by the coprocessor

 Assume that the 8087 needs to read an operandi WWee
8088/86 Initiates the operand read cycle, the &p&alss the
20-bit address and saves it internally.

 |f the operand is a single word (like a word ir@Bgthe
read cycle has been initiated and the word will eonto
both processors.

 Only the 8087 will use the data; the 8088/86 vghare It.
However, If the operand is 32 bits or longer, tA8Bwill
take over the buses by sending a low pulse onQ¥$RO
to the RQGT1 of the 8088/86

Reading an operand by the coprocessor

 The 8088/86 in turn will send back a low pulsentigh the
same pin, thereby allowing the 8087 to take overdnses.

e Remember, RQ/GT isladirectionalbus.

e \When the 8087 takes over the buses, it will usenthintil it
brings in the last byte of the operand.

* [t is only then that by activating RQ/GT (makindaw),
control of the buses is given back to the 8088/86.

e For example, in the case of a DT operand, the 8287
control over the buses for the time needed to falichO
bytes and then it gives back the buses.

Writing an operand by the coprocessor

In the case of writing an operand by the coprocessor (e.g., FST data),
the 8088/86 Initiates the write cycle, but the 8087 ignores it since the
8086 does not have the operand.

This is called @lummy cycle.

All the 8087 doesluring the dummy cycle is grab the address of the
first memory locatiowhere the operand is to be stored and keep it
until the data is ready, and then it requests the use of the buses by
activating the RQ/GT pir

From then on, the process is the same as the read cycle, meaning tha
it will use the buses until it writes the last byte of the operand.

All the cases discussed so far have been taken care of by either the
assembler or the hardware and there was no need for the programmet
to be worried.

8087 status words

15 ' 7

Exception flags
1 = exception occurred

invalid operation

denormalized operand

zero divide

overflow

underflow

precision

reserved

¢ interrupt request

condition code

stack top pointer

busy
ST values

000 = register 0 is stack top
001 = register 1 is stack top

111 = register 7 is stack top

Figure 20-5. 8087 Control and Status Words

Status Register (cont..)

» Status register reflects the over all operation of the
COProcessor.

» B-Busy bit indicates that coprocessor 1s busy executing a
task. Busy can be tested by examining the status or by
using the FWAIT mstruction. Newer coprocessor
automatically synchronize with the microprocessor, so

busy tlag need not be tested before performing additional
coprocessor fasks.

r C ;-C, C ondition code bits mdicates conditions about the
COProcessor.

» TOP- Top of the stack (ST) bit mndicates the current
register address as the top of the stack.

» ES-Error summary bit 1s set 1f any unmasked error bit (PE.
UE. OE. ZE, DE, or IE) 1s set. In the 8087 the error
summary 1s also caused a coprocessor mterrupt.

» PE- Precision error mdicates that the result or operand
executes selected precision.

» UE-Under flow error mdicates the result 1s too large to be
represent with the current precision selected by the control
word.

» OE-Over flow error mdicates a result that 1s too large to be
represented. If this error 1s masked, the coprocessor
oenerates mfimty for an overflow error.

» ZE-A Zero error indicates the divisor was zero while the
dividend 1s a non-mnfinity or non-zero number.

’ DE-Denqnnalized e1101 indicates at least one of the
operand 1s denormalized.

» 1E-Invalid error mdicates a stack overtlow or underflow.,

imndeterminate

from (0/0.,0.-0. etc) or the use of a NAN as

an operand. T

us flag mdicates error such as those

produced by taking the square root of a negative number.

8087 control words

15 12

7

ic | Rc |} PC

PM

UM

om|zv TomTim

II(JM

Interrupt-enable mask
0 = interrupts enabled
1 = interrupts disabled (masked)

Precision control
00 = 24 bits
01 = reserved
10 = 53 bits
11 = 64 bits

Rounding control

00 = round to nearest or even

01 = round down
10 = round up
11 = chop (truncate)

Infinity control
0 = projective
1 = affine

Exception masks
1 = exception masked

invalid operation
denormalized operand
zero divide

overflow

underflow

precision

reserved
interrupt-enable mask
precision control
rounding control
infinity control
reserved

Control Register

» Control register selects precision, rounding control,
mfimty control.

It also masks an unmasks the exception bits that
correspond to the rightmost Six bits of status register.

» Instruction FLDCW 1s used to load the value mto the
control register.

Control Register (cont..)

» 1C —Infinity control selects | INEFINTTY CONTROL.

either affine or projective
mtmity. Affine allows
positive and negative
mfmity. while projective
assumes mnfmity

0 = Projective
1 = Affie

1s unsigned.

» RC —Rounding control
deternunes the type of
rounding.

ROUNDING CONTROL
00=Round to nearest or even
01=Round down towards minus infinity
10=Round up towards plus infinity
11=Chop or truncate towards zero

Control Register

» PC- Precision control sets
the precision ot he result as
detfine 1n table

» Exception Masks — It
Determines whether the
error indicated by the
exception affects the error
bit 1n the status register. If a
logicl 1s placed 1 one of
the exception control bats.
corresponding status register
bit 1s masked oft.

PRECISION CONTROL

00=S1ingle precision (short)
O01=Reserved
10=Double precision (long)

1 1=Extended precision
(temporary)

Pentium

 There are few changes as far as instructions and
registers are concerned from the 8087 to the math
processor inside the Pentium, except for a few new
Instructions and much lower clock counts for
Instruction execution.

 The new Instructions introduced in the 80387
FSIN(sine), FCOS (cosine), FSINCOS (sine and
cosine), FPREMI (partial remainder), and FUCOM
and its variations.

