“HE 8651 MICROCONTROLLER
AND EMBEDDED SYSTEMS

Muhammad Ali Mazidi
Janice Giilispie Mazidi

Prentice Hall
Upper Saddle River, New Jersey ~ Columbus, Ohio

.. man’'s glory lieth in his knowledge,
his uprighit conduct, his praiseworthy character,
his wisdom, and not in his nationality or rank.

- Baha'u'llah

CONTENTS AT A GLANCE

CHAPTERS

WL RN T2

Pt et et et
sEwNT S

Al

—_—
1%

introduction to Computing
‘ihe 8051 Microcontrollers
7051 Assembly Language Programming

~ Jump, Loop, and Call Instructions

i O Port Programming

2951 Addressing Modes

A rithmetic Instructions and Programs

I.ogic Instructions and Programs

Single-bit Instructions and Programming
fimer/Counter Programming in the 8051

#2051 Serial Communication

Interrupts Programming

Keal-world Interfacing I: LCD, ADC, and Sensors
Real-world Interfacing I1: Stepper Motor, Keyboard, DAC
4051/31 Interfacing to External Memory

#31/51 Interfacing to the 8255

APPENDICES

TQTmoU Q>

%051 Instructions, Timing, and Registers
%051-Based Systems: Wire-Wrapping and Testing

[Technology and System Design Issues
lowcharts and Pseudocode

%051 Primer for X86 Programmers

ASCII Codes

Assemblers, Development Resources, and Suppliers
Data Sheets

23
35
65
83
95
109
127
143
157
183
209
235
255
273
303

325
365
375
395

" 400

401
402
404

iv

CONTENTS

CHAPTER 0: INTRODUCTION TO COMPUTING 1

Section 9.1: Numbering and Coding Systems 2
Section 0.2: Digital Primer 9
Section 0.3: Inside the Computer 13

CHAPTER 1: THE 8051 MICROCONTROLLERS 23

Section 1.1: Microcontrollers and Embedded Processors 24
Section 1.2: Overview of the 8051 Family 28

CHAPTER 2: 8051 ASSEMBLY LANGUAGE PROGRAMMING 3§
Section 2.1: Inside the 8051 36
Section 2.2: Introduction to 8051 Assembly Programming 39
Section 2.3: Assembling and Running an 8051 Program 42
Section 2.4: The Program Counter and ROM Space in the 8051 44
Section 2.5: Data Types and Directives 47
Section 2.6: 8051 Flag Rits and the PSW Register 50
Section 2.7: 8051 Register Banks and Stack 53

CHAPTER 3: JUMP, LOOP, AND CALL INSTRUCTIONS 65
Section 3.1: Loop and Jump Instructions - 66
Section 3.2: Call Instuctions 71
Section 3.3: Time Delay Generation and Calculation

~]
(@3

CHAPTER 4: /O PORT PROGRAMMING 83
Section 4.1: Pin Description of the 8051 84
Section 4.2: /0O Programming; Bit Manipulation 91

CHAPTER 5: 8051 ADDRESSING MODES 95
Section 5.1: Immediate and Register Addressing Modes 96
Section 5.2: Accessing Memory Using Various Addressing Modes 98

CHAPTER 6: ARITHMETIC INSTRUCTIONS AND PROGRAMS 109
Section 6.1: Unsigned Addition and Subtraction 110
Section 6.2: Unsigned Multiplication and Division 117
Section 6.3: Signed Number Concepts and Arithmetic Operations 119

CHAPTER 7: LOGIC INSTRUCTIONS AND PROGRAMS 127
Section 7.1: Logic and Compare Instructions 128
Section 7.2: Rotate and Swap Instructions 134
Section 7.3: BCD and ASCII Application Programs 137

CHAPTER 8: SINGLE-BIT INSTRUCTIONS AND PROGRAMMING 143
Section 8.1: Single-Bit Instruction Programming 144
Section 8.2: Single-Bit Operations with CY 150
Section 8.3: Reading Input Pins vs. Port Latch 152

CHAPTER 9: TIMER/COUNTER PROGRAMMING IN THE 8651 157
Section 9.1: Programming 8051 Timers 158
Section 9.2: Counter Programming 173

CHAPTER 10: 8051 SERIAL COMMUNICATION 183
Section 10.1: Basics of Serial Communication 184
Section 10.2: 8051 Connection to RS232 191
Section 10.3: 8051 Serial Communication Programming 193

CHAPTER 11: INTERRUPTS PROGRAMMING 269
Section 11.1: 8051 Interrupts 210
Section 11.2: Programming Timer Interrupts 212
Section 11.3: Programming External Hardware Interrupts 216
Section 11.4: Programming the Serial Communication Interrupt 223
~Section 11.5: Interrupt Priority in the 8051 227

CHAPTFR 12: REAL-WORLD INTERFACING I: LCD, ADC,
AND SENSORS 235
Section 12.1: Interfacing an LCD to the 8051 236
Section 12.2: 8051 Interfacing to ADC, Sensors 243

CHAPTER 13: REAL-WORLD INTERFACING 1I: STEPPER MOTOR,; -
KEYBOARD, DAC 255

Section 13.1: Interfacing a Stepper Motor 256

Section 13.2: 8051 Interfacing to the Keyboard .~ 261

Section 13.3: Interfacing a DAC to the 8051 266

vi

CIAPTER 14: 8951/31 INTERFACING TO EXTERNAL MEMORY 273
Section 14.1: Semiconductor ™iemory 274
Section 14.2: Memory Address Decoding 284
Section 14.3: 8031/53 liierfacing with External ROM 287
Section 14.4: Data Memory Space 292

CHAPTER 15: 8031/51 iNTERFACING TO THE 8255 303
Section 15.1: Programming the 8255 304
Section 15.2: 8255 I[nterfacing 312

Section 15.3: Other Modes of the 8255 316

APPENDIX A: 8051 INSTRUCTIONS, TIMING, AND REGISTERS 325
APPENDIX B: 8051-BASED SYSTEMS: WIRE-WRAPPING AND TESTING 363
API;ENDIX C: IC TECHNOLOGY AND SYSTEM DESIGN ISSUES 375
APPENDIX D: FLOWCHARTS AND PSEUDOCODE 395

APPENDIX E: 8051 PRIMER FOR X386 PROGRAMMERS 400

APPENDIX F: ASCII CODES 401
APPENDIX G: ASSEMRBLRS, DEVELOPMENT RESOURCES, AND SUPPLIERS 402

APPENDIX H: DATA SHEETS 404

vii

INTRODUCTION

Products using microprocessors generally fall into two categories. The first
category uses high-performance microprocessors such as the Pentium in applica-
tions where system performance is critical. ‘We have an entire book dedicated to
this topic, The 80x86 IBM PC and Compatible Computers, Volumes ! and II, from
Prentice Hall. In the second category of applications, performance is secondary;
issues of space, power, and rapid development are more critical thar raw process-
ing power. The microprocessor for this category is often called a microcontroller.

This book is for the second category of applications. The 8051 is a widely
used microcontroller. There are many reasons for this, including the existence of
multiple producers and its simple architecture. This book is intended for use in col-
lege-level courses teaching microcontroliers and embedded systems. It not only
establishes a foundation of assembly language programming, but also provides a
comprehensive treatment of 8051 interfacing for engincering students. From this
background, the design and interfacing of microcontroller-based embedded sys-
tems can be explored. This book can be also used by practicing technicians, hard-
ware engineers, computer scientists, and hobbyists. It is an ideal source for those
building stand-alone projects, or projects in which data is collected and fed into a
PC for distribution on a network.

Prerequisites

Readers should have had an introductory digital course. Knowledge of a
programming language would be helpful but is not necessary. Although the book
is written for those with no background in assembly language programming, stu-
dents with prior assembly language experience will be able to gain a mastery of
8051 architecture very rapidly and start on their projects right away.

Overview

A systematic, step-by-step approach is used to cover various aspects of
8051 Asscmbly language programming and interfacing. Many examples and sam-
ple programs are given to clarify the concepts and provide students with an oppor-
tunity to learn by doing. Review questions are provided at the end of each section
to reinforce the main points of the section.

Chapter 0 covers number systems (binary, decimal, and hex), and provides
an introduction to basic logic gates and computer terminology. This is designed
especially for students, such as mechanical engineering students, who have not
taken a digital logic course or those who need to refresh their memory ‘on these
topics.

Chapter 1 discusses 8051 history and features of other 805! family mem-
bers such as the 8751, 89C51, DS5000, and 8031. It also provides & list of various
producers of 8051 chips.

Chapter 2 discusses the internal architecture of the 8051 and explains the

use of an 8051 assembler to creatc ready-to-run programs. It also explores the
stack and the flag register.

viii

In Chapter 3 the topics of 1oop, jump, and call instructinns are discussed,
with many programming examples.

Chapter 4 is dedicated to the discussion of /O ports. This allows students
who are working on a project to start experimenting with 8051 1/0 interfacing and
start the project as soon as possible.

Chapter 5 covers the 3051 addressing modes and explains how to use the
code space of the 8051 to store data, as well as how to access data.

Chapter 6 is dedicated to arithmetic instructions and programs.

Logic instructions and programs arc covered in Chapter 7.

In Chapter 8 we discuss one of the most important features of the 8051, bit
manipulation, as well as single-bit instructions of the 8051.

Chapter 9 describes the 8051 timers and how to use them as event-counters.

Chapter 10 is dedicated to serial data communication of the 8051 and its
interfacing to the RS232. It also shows 8051 communication with COM ports of
the IBM PC and compatible computers.

Chapter 11 provides a detailed discussion of 8051 interrupts with many
examples on how to write interrupt handler programs.

Chapter 12 shows 8051 interfacing with real-world devices such as LCDs,
ADCs, and sensors.

Chapter 13 shows 8051 interfacing with real world devices such as the key-
board, stepper motors, and DAC devices.

In Chapter 14 we cover 3031/51 interfacing with external memories, both
ROM and RAM. '

Finally, in Chapter 15 the issue of adding more ports to the 8031/51 is dis-
cussed, and the interfacing of an 8255 chip with the microcontroller is covered in
detail. ,

The appendices have been designed to provide all referencc materiai
required for the topics covered in the book. Appendix A describes each 8051
instruction in detail, with examples. Appendix A also provides the clock count for
instructions, 8051 register diagrams, and RAM memory maps. Appendix B
describes wire wrapping, and how to design your own 8051 trainer board based on
89C31 or DS5000 chips. Appendix C covers IC technology and logic families, as
well as 8051 1/0 port interfacing and fan-out. Make sure you study this before con-
necting the 8051 to an external device. In Appendix D, the use of flowcharts and
psuedocode is explored. Appendix E is for students famiiiar with x86 arclidecture
who need to make a rapid transition to 8051 architecture. Appendix F provides the
table for ASCII characters. Appendix G lists resources for assembler shareware,

and electronics parts. Appendix H contains data sheets for the 8051 and other 1C
chips. h

Diskette contents

The diskette attached to the book contains the lab manual, which has many
experiments for software programming and hardware interfacing of the 8051.
“ase are in Microsoft Word 97 format. In addizion, the diskette contains the
source code for all the programs in the book (in ASCII files). Also on the diskette

arc two guides for using 8051 assemblers and simulators from Franklin Software
and Keil Corporation.

ix

Acknowledgments

This book is the result of the dedication and encouragement of many indi-
viduals. Our sincere and heartfelt appreciation goes to all of them.

First, we would like to thank Professor Danny Morse, the most knowl-
edgeable and experienced person on the 8051 that we know. He felt a strong need
for a book such as this, and due to his lack of time he encouraged us to write it. He
is the one who introduced us to this microcontroller and was always there, ready
to discuss issues related to 8051 architecture. :

Also we would like to express our sincere thanks to Professor Clyde
Knight of Devry [nstitute of Technology for his helipful suggestions on the organ-
ization of the book.

In addition, the following professors and students found errors while using
the book in its pre-publication form in their microcontroller course, and we thank
them sincerely: Professor Phil Golden and John Berry of DeVry Institute of
. Technology, Robert Wrightson, Priscilla Martinez, Benjamin Fombon, David
Bergman, John Higgins, Scot Robinson, Jerry Chrane, James Piott, Daniel Rusert,
Michael Beard, Landon Hull, Jose Lopez, Larry Hill, David Johnson, Jerry Kelso,
Michael Marshall, Marc Hoang, Trevor Isra.

Mr. Roiin McKinlay, an excellent student of the 805 1, made many valuable
suggestions, found many errors, and helped to produce the solution manual for the
end-of-chapter problems. We sincerely appreciate his enthusiasm for this book.

Finally, we would like to thank the people at Prentice Hall, in particular our
publisher, Mr. Charles Stewart, who continues to support and encourage our writ-
ing, and our production editor Alex Wolf who made the book a reality.

We enjoyed writing this book, and hope you enjoy reading it and usiag {
for your courses and projecis. Pleasc iot us know it you have any suggestions ol
find any errors.

Assemblers

The following gives two sites where you can download assemblers:

www.fsinc.com for Franklin Software, Inc.
www.keil.com for Keil Corporation

Another interesting web site is www.8052.com for more discussion on the
microcontroller. Finally, the following site provides useful Intel manuais:

http://developer.intel.conﬂdesign/auto/mcsS 1/manuals

ABOUT THE AUTHORS

Muhammad Ali Mazidi holds Master's degrees from both Southern
Methodist University and the University of Texas at Dallas, and currently is com-
pleting his Ph.D. in the Electrical Engineering Department of Southern Methodist
University. He is a co-founder and chief researchér of Microprocessor Education Group,
a company dedicated to bringing krowiedge of microprocessors to the widest possible
audience. He also teaches microprocessor-based system design at DeVry Institute of
Technelogy in Dallas, Texas.

Janice Gillispie Mazidi has a Master of Science degree in Computer
Science from the University of North Texas. After several years experierice as 2 software
engineer in Dallas, she co-founded Microprocessor Education Group, where she is the
chief technical writer and production manager, and is responsitle for software develop-
ment and testing.

The Mazidis have been married since 1985 and have two sOnS, Robert
Nabil and Michael jamal.

The authors can be contacted at the following address if you have any com-
ments or suggestions, or if you find any errors.

Microprocessor Education Group
] P.O. Box 381970

Duncanville, TX 75138

U.S.A.

mmazidi@dal.devry.edu

xi

This volume is dedicated to the memory of Dr. A. Davoodi, Professor of
Tehran University, who in the tumultuous years of my youth taught me the
importance of an independent seuich for truth. - Muhammad Ali Mazidi

CHAPTER (

INTRODUCTION TO

COMPUTING

OBJECTIVES

Upon completion of this chapter, you wili be able to:

3>

>3

==
- terabyte, and gigabyte
>3

33

>3
' purpose of each type of bus
S>>

. Convert any number from base 2, b;lse 10, or base 16 to any of the "

- . other two bases
>3
>3
5
35

Add and subtract hex numbers

Add binary numbers

Represent any binary number in 2’s complemeat
Represent an aiphanumeric string in ASCII code

- Describe logical operations AND, OR, NOT, XOR, NAND, NOR

3 | Use logic gates to diagram simple circuits

Explain the difference between a bit, a nibble, a byte, and a word
Give precise mathematical definitions of the terms ktlobyte, megabyte,

Explain the difference between RAM and ROM and describe thelr use
Describe the purpose of the major components of a computer system
List the three types of buses found in computers and describe the

Describe the role of the CPU in computer systems
List the major componexts of the CPU and describe the purpose of each

To understand the software and hardware of a microcontroller—based sys-
tem, one must first master some very basic concepts underlying computer design.
In this chapter (which in the tradition of digital computers can be called Chapter
0), the fundamentals of numbering and coding systems are presented. After an
introduction to logic gates, an overview of the workings inside the computer 1s
given. Finally, in the fast section we give 2 brief history of CPU architecture.
Although some readers may have an adequate background in many of the topics
of this chapter, it is recommended that the material be scanned, however briefly.

SECTION 0.1: NUMBERING AND CODING SYSTEMS

Whereas human beings use base 10 (decimal) arithmetic, computers use
the base 2 (binary) system. In this section we explain how to conveit from the dec-
imal system to the binary system, and vice versa. The convenient representation of
. binary numbers, called hexadecimal, also is covered. Finally, the binary format of
the alphanumeric code, called ASCII, is explored.

Decimal and binary number systems

Although there has been speculation that the origin of the base 10 system
is the fact that human beings have 10 fingers, there is absolutely no speculation
about the reason behind the use of the binary system in computers. The binary sys-
tem is used in computers because 1 and 0 represent the two voitage levels of on
and off. Whereas in base 10 there are 10 distinct symbols, 0, 1, 2, ..., 9,in base 2
there are only two, C and i, with which to generate numbers. Base 10 contains dig-
its 0 through 9; binary contains digits 0 and 1 only. These two binary digits, 9 and
1, are commonly referred to as bifs.

Converting from decimal to binary

One method of converting from decimal to binary is to divide the decimal
number by 2 repeatedly, keeping track of the remainders. This process continues
until the quotient becomes zero. The remainders are then written in reverse order
to obtain the binary number. This is demonstrated in Exarple 0-1.

Example 0-1

Convert 25 to binary.

Solution:

_ Quotient Remainder _ : T
25/2 = 12 1 LSB (least significant bit)
12/2 = 6 0
6/2 = 3 0 :

3/2 = 1 1
1/2 = 0 1 MSB (most significant bit)

Therefore, 25,9 = 11001,.

Converting from binary to decimal {740683;, =
To convert from binary to decimal, it is
: : 3 x 100 = 3
important to understand the concept of weight | o 0 101 - 80
associated with each digit position. First, as an g » 102 - 600
analogy, recall the weight of numbers in the base |0 x 103 = 0000
10 s5ystem, as shown in the diagram. By the same |4 X mf = 40000
token, each digit position in a number in base 2 7 % 10°> = 100000
: . Sl e 740683
has a weight associated with it:
110101, = Decimal Binary
1x20 = Ixl = 1 1
ox2l = Ox2 = 0 010
1x22 = x4 = 4 100
0x23 = 0x8 = 0 0000
1x24 = 1x16 = 16 10000
1x2°5 = 1x32 = 32 100000
53 110101

Knowing the weight of each bit in a binary number makes it simple to add
them together to get its decimal equivalent, as shown in Example 0-2.

Example 0-2

Convert 11001, to decimal.

Selution:
Weight: 16 8 4 2 1
Digits: 1 1 0 0 1
Sum: e+ 8+ 0+ 0+ 1=25¢9

Knowing ihe weight associated with cach binary bit position allows one 16
convert a decimal number to binary directly instead of going through the process
of repeated division. This is shown in Example 0-3.

Example 0-3 : : T

Use the concept of weight to convert 391 to binary.

Solution:
Weight: 32 16 8 4 2 1
1 ¢ 0 1 1 1
3+ 0+ O+ 4+ 2+ 1=39

Therefore, 39¢ = 1001115.

CHAPTER 0: INTRODUCTION TO COMPUTING __ 3

Hexadecimal system Table 0-1: Base 16
Number Systems

Base 16, the hexadecimal system as it is called in
computer literature, is used as a convenient representation Decimal Binary _ Hex

of binary numbers. For example, it is much easier fora 0 0000 0
human being to represent a string of 0s and 15 such as | 0001 1
100010010110 as its hexadecimal equivalent of 896H. The 2 0010 2
binary system has 2 digits, 0 and 1. The base 10 system has 3 0011 3
10 digits, 0 through 9. The hexadecimal (base 16) system 4 0100 4
has 16 digits. In base 16, the first 10 digits, 0 to 9, are the b) 0101 5
same as in decimal, and for the remaining six digits, the let- 6 0110 6
ters A, B, C, D, E, and F are used. Table 0-1 shows the 7 0111 7
equivalent binary, decimal, and hexadecimal representa- 8 1000 8
tions for 0 to 15. 9 1001 9
. . 10 1010 A
_Converting between binary and hex T o011 B
To represent a binary number as its equivalent hexa- 12 1109 C
" decimal number, start from the right and group 4 bits at a 13 1101 D
time, replacing each 4-bit binary number with its hex equiv- 14 1110 E
alent shown in Table 0-1. To convert from hex to binary, 15 1111 F

each hex digit is replaced with its 4-bit binary equivalent.
See Examples 0-4 and 0-5. '

Example 0-4

Represent binary 1001111 10101 in hex. i

First the number is grouped into sets of 4'

Solution: . Shee o
C f 4'bits: 1001 1111 0101.
“Then each group of 4 bits is replaced with its hex equivalent:
001 1111 0101
9 F 5
Therefore, 100111110101, = 9F5 hexadecimal.

Example 0-5

Cunvert hex 29B to binary.

Solution:
g 2 9 B
= 0010 ‘1001 1011 -
Dropping the leading zeros gives 1010011011.

Converting from decimal to hex

Converting from decimal to hex could be approached in two ways:

1. Convert to binary first and then convert to hex. Example 0-6 shows this
method of converting decimal to hex.

2. Convert directly from decirmal to hex by repeated division, keeping track of the
remainders. Experimenting with this method is left to the reader.

Example 0-6 . : »
(a) Convert 45 to hex. '

2

1

First, convert to binary.
32+8+4+1 =45

o —
=

8 4
1 1

S I
p—

45,0 =0010 1101, = 2D hex
{(b) Convert 629, to hex.

512 256 128 o4 2 16

1 0 0 1 1 |

2 1
0 1

8 4
0 1

6290 = (512 +64+32+16+4+ 1)=00100111 01015 =275 hex
(c) Convert 1714 to hex.

1024 512 256 128 64
1 1 0 1 0

16 8
1 0

O
— N

o -

171419= (1024 +512+ 128 + 32 + 16 +2)=0110 1011 0010, = 6B2 hex

Converting from heéx to decimal

Conversion from hex to decima! can also be approached in two ways:

1. Convert from hex to binary and then to decimal. Example 0-7 demonstrates
this method of converting from hex to decimal.

2. Convert directly from hex to decimal by summing the weight of all digits.

Example 0-7

Convert the foilowing hexadecimal numbers to decimal.

(a) 6B2 5 = 0110 1011 0010,
1024 512 256 128 64 32 16
1

1 1 0 1 0 1

O oo
o |~
il

1024 + 512+ 128 + 32+ 16 +2 = 1714y,

-

(b) 9F2D ¢ = 1001 1111 0010 1101,

T o0 o 1 1 1 1.1 001

32768 + 4096 + 2048 + 1024 + 512 +256 +32 +8+4 + 1= 40,7499

CHAPTER 0: INTRODUCTION TO COMPUTING]

Table 0-2: Counting in Bases Counting in bases 10, 2, and 16

Decimal Binary Hex To show the relationship between all

0 00000 0 three bascs, in Table 0-2 we show the sequence

1 00001 1 of numbers from 0 to 31 in decimal, along with

2 00010 2 the equiva- Table 0 - 3: Binary Addition

3 00011 3 ient binary -

4 00100 4 and hex A+B Carry Sum

5 0010l 5 numbers. 0+0 0 ¢

6 00110 6 Notice in O0t1 0 ‘

7 001117 ecach base 1+0 0 ‘

8 01000 8 that when 11 1 0

9 01001 9 onc more is

10 01010 A added ~ to

11 01011 B the highest digit, that digit becomes zero and a
12 01100 C | is carried to the next-highest digit position.
13 01101 D For example, in decimal, 9 + 1 = 0 with a carry
14 01110 E to the next-highest position. In binary, 1 +1=
15 01111 F 0 with a carry; similarly, in hex, F + 1 =0 with
16 10000 10 a carry.

17 10051 11 e .

T 10010 12 Addition of binary and hex numbers

19 10011 1 The addition of binary numbers is a
20 10190 14 very straightforward process. Table 0-3 shows
%1 10101 15 the addition of two bits. The discussion of sub-
22 10110 16 traction of binary numbers is bypassed since zll
23 10111 17 computers use the addition process to imple-
24 11000 18 ment subtraction. Although computers have
25 11001 19 adder circuitry, there is no separate circuitry for
26 11010 1A subtractors. Instead, adders are used in con-
27 11011 1B junction with 2's complement circuitry to pet-
28 11100 1C form subtraction. In other words, to implement
29 1110} 1D “x - 37, the computer takes the 2’s complement
30 1110 1E of y and adds it to x. The concept of 2’s com-
31 11111 1F

plement is reviewed next. Example 0-8 shows
the addition of binary numbers.

Example 0-8

| Add the following binary numbers. Check against their decimal equivalents.

Solution:
Binary Decimal
1101 13
+ 1001 9

10110)

2’s compiement

To get the 2’s complement of a binary number, invert all the bits and then
add 1 to the result. Inverting the bits is simply a matter of changing all 0s to 1s
and 1s to 0s. This is called the ['s complement. See Example 0-9.

Example 0-9
Take the 2’s complement of 10011101

Solution:
10011101 binary number
01100010 1’s complement
+ 1
01100011 2’s complement

Addition and subtraction of hex numbers

In studying issues related to software and hardware ot computers, it is
often necessary to add or subtract hex numbers. Mastery of these techniques is
essential. Hex addition and subtraction are discussed separately below.

Addition of hex numbers

This section describes the process of adding hex numbers. Starting with the
least significant digits, the digits are added together. If the resuit is less than 16,
verite that digit as the sum for that position. Ifit1s greater than 16, subtract 16 from
it to get the digit and carry 1 to the next digit. The best way to explain this is by
example, as shown in Example 0-10.

Example 0-10

Perform hex addition: 23D9 + 94BE.

Solution:
2306 LSD: 9+14=123 23 - 16 =7 with a carry
+ 94BE 1+13+11=25 25 - 16 = 9 with a carry
B897 1+3+4=38

MSD: 2+9=8B

Subtraction of hex numbers

In subtracting two hex numbers, if the second digit is greater than the first,
borrow 16 from the preceding digit. See Example 0-11.

ASCIl code i

The discussion so far has revolved around the representation of number
-ystems. Since all information in the computer must be represented by 0s and 1s,
binary patterns must be assigned to letters and other characters. In the 1960s a
standard representation called ASCII (American Standard Code for Information
Interchange) was established. The ASCII (pronounced “ask-E”) code assigns

CYAPTER 0: INTRODUCTION TO COMPUTING 7

binary patterns for numbers 0 to 9, all the | Hex Symbol Hex Symbol
letters of the Eng!ish alphabet, both |41 A 61 a
uppercase (capital) and lowercase, and |42 B 62 b
many control codes and punctuation |43 C 63 c
marks. The great advantage of this sys- 4 . D 64 d

tem is that it is used by most computers, |-

so that information can be shared among 59 Y 9 y
computers. The ASCIi system uses a A z A z

total of 7 bits to represent each code. For
example, 100 00C1 is assigned to the
uppercase letter “A” and 110 0001 is for
the lowercase “a”. Often, a zero is placed in the most significant bit position to
make it an 8-bit code. Figure 0-1 shows selected ASCII codes. A complete list of
ASCII codes is given in Appendix F. The use of ASCII is not only standard for
keyboards used in the United States and many other countries but also provides a
standard for printing and displaying characters by output devices such as printers
and monitors.

Notice that the pattern of ASCII codes was designed to allow for easy
manipulation of ASCII data. For example, digits O through 9 are represented by
ASCII codes 30 through 39. This enables a program to easily convert ASCII to
decimal by masking off the “3” ir: the upper nibble. Also notice that there is a rela-
tionship between the uppercase and lowercase letters. The uppercase letters are
represented by ASCII codes 41 through SA while lowercase letters are represent-
ed by codes 61 through 7A. Looking at the binary code, the only it that is difter-
ent between the uppercase “A” and lowercase «“3” is bit 5. Therefore, conversion
between uppercase of lowercase is as simple as changing bit 5 cf the ASCII code.

Figure 0-1. Selected ASCII Codes

Example 0-11

Perform hex subtraction: S9F - 2B8.

Solution:
59F LSD: 8 from 15=7
- 2B8 11 from 25 (9+16)=14(E)
2E7 2 from4 (5-1)=2

Review Questions

1. Why do computers use the binary number system instead of the decimal sys-
tem?

Convert 34, to binary and hex.

Convert 110101, to hex and decimal.

Perform binary addition: 101100 + 101.

Convert 101100, to its 2’s complement represcntation.

Add 36BH + F6H.

Subtract 36BH - FO6H.

Write “80x86 CPUs” in its ASCII code (in hex form).

:ﬁ—.b) l\)

0~ W

SECTION 0.2: DiGITAL PRIMER

This section gives an overview of digital logic and design. First, we cover
binary logic operations, then we show gates that perform these functions. Next,
logic gates are put together to form simple dicital circuits. Finally, we cover some
logic devices commonly found in microcontrolier interfacing,.

Binary logic

As mentioned earlier, computers use the
binary number system because the two voltage lev-
els can be represented as the two digits 0 and 1.
Signals in digital electronics have two distinct volt-
age levels. For example, a system may define 0 V as

logic 0 and +5 V as logic 1. Figure 0-2 shows this

systern with the built-in tolerances for variations in
the voltagc. A valid digital signal in this example
should be within either of the two shaded areas.

Logic gates

Binary logic gates are simple circuits that
take one or more input signals and send out one out-
put signal. Several of these gates are defined below.

AND gate

The AND gate takes two or more inputs and
performs a logic AND on them. See the truth table
and diagram of the AND gate. Notice that if both
inputs to the AND gate are 1, the output will be 1.
Any other combination of inputs will give a 0 output.
The example shows two inputs, x and y. Muitiple
outputs are also possible for logic gates. In the casc
of AND, if all inputs are 1, the output is 1. If any
input is 0, the output is zero.

OR gate

The OR logic function will output 2 1 if one
or more inputs is 1. If all inputs are 0, then and only
then will the output be 0.

~

Tri-state buffer

A buffer gate does not change the logic level

of the inpu:. It is used to isolate or amplify the sig-
nal.

sl

4] Logicl

T

Logic 0

Figure 0-2. Binary Signals

Logical AND Function
Inputs Qutput
XY XAND Y
00 0

01 0

10 ' 0

11 1

X—D-—XANDY
Y—

Logical OR Function

Inputs Output
XY XORY
00 0

01 1

10 -]

11 1

X — XORY
Y —

Buffer

Clk

CHAPTER 0: INTRODUCTION TO COMPUTING

Inverter

The inverter, also called NOT, outputs the
value opposite to that input to thc gate. That is, a |
input will give a 0 output, while a 0 input will give a
| output. :

XOR gate

The XOR gate performs an exclusive-OR
operation on the inputs. Exclusive-CR produces a 1
output if one (but only one) input is !. If both
operands are 0, the output is zero. Likewise, if both
operands are 1, the output is also zero. Notice from
the XOR truth table, that whenever the two inputs

are the same, the output is zero. This function can be -

used to compare two bits to see if they are the same.

NAND and NOR gates

The NAND gate functions like an AND gate
with an inverter on the output. It produces a zero out-
put when all inputs are 1; otherwise, it produces a |
output. The NOR gate functions like an OR gate with
an inverter on the output. It produces a 1 if all inputs
are 0; ctherwise, it produces a 0. NAND and NOR
gates are used extensively in digital design bccause
they are easy and inexpensive to fabricate. Any cir-
cuit that can be designed with AND, OR, XOR, and
INVERTER gates can be implemented using only
NAND and NOR gates. A simple example of this is
given below. Notice in NAND, that if any input is
zero, the output is one. Notice in NOR, that if any
input is one, the output is zero.

Logic design using gates

Next we will show a simple logic design to
add two.binary digits. If we add two binary digits
there are four possible cutcomes:

Carry Sum

0+0= 0 0
0+1= 0 1
1+0= 0 1
1+1= 1 0

Logical Inverter

Input Outout
X NOT X
0 1

1 0

X —o— NOT X

Logical XOR Function

Inputs Output
- XY X XORY
00 0
01 1
10 1
0

11
X
Y :jD—X XOR Y

Leogical NAND Function

Inpuis Output
XY X NAND Y_
00. i

01 1

10 1

11 0

X —J}X NAND Y
Y —_—

Logical NOR Function
Inputs Outpuit
XY XNORY
00 1

01 0

10 0

il 0

10

Notice that when we add | + 1 we get 0 with a carry o the next higher
place. We wil! iiced to determine the sum and the carry for this design. Notice that
the sum column above matches the output for the XOR function, and that the carry
column miatches the output for the AND function. Figure 0-3 (a) shows a simple
adder implemented witlhi XOR and AND gates. Figure 0-3 (b) shows the same

logic circuit implemented with AND and OR gates.

(a) Half-Adder Using XOR and AND

1D

B

Sum Y
X —]
Y —Do-
————— Carry
: X
Y —

X—Do—‘

~J

Sum

Carry

(a) Half-Adder Using AND, OR, Inverteis

Figure 0-3. Two Implementations of a Hali-Adder

Figure 0-4 shows a block dia-
gram of a half-adder. Two half-adders
can bc combined te form an adder that
can add three input digits. This is called
a full-adder. Figure 0-5 shows the logic
diagram of a full adder, along with a
block diagram which inasks the details
of the circuit. Figure 0-6 shows a 3-bit
adder using 3 full-adders.

Half
Adder

Sum

Carry
out

Figure 0-4. Block Diagram of a dalf-Adder

Cin

—

) O

X — Half- Carry
)D Sum Y Adder
] a—
, ____]V,Sum
Half-
D } >_ C out Adder Car
|— Cin — ry
Final Sum

Final

E Carry

Figure 0-5. Full-Adder Built From a Half-Adder

CHAPTER 0: INTRODUCTION TO COMPUTING

11

Decoders

Another example of the application
of logic gates is the decoder. Decoders are
widely used for address dccoding in com-
puter design. Figure 0-7 shows decoders for
9 (1001 binary), and 5 (0101) using invert-
ers and AND gates.

Flip-flops

A widely used component in digital
systems is the flip-flop. Frequently, flip-
flops are used to store data. Figure 0-8
_ shows the logic diagram, block diagram,
and truth tabie for a flip-flop.

The D flip-flop is widely used to
latch data. Notice from the truth table that a
D-FF grabs the data at the input as the clock
is activated. A D-FF holds the data as long
as the power is on.

— . SO
X0 Fuil
Adder
YO Carry
X1 —] S1
Full
Y1 Adder
— Carry
Il
X2 —] S2
Full
v2 Adder |[Carry s3

Figure 0-6. 3-Bit Adder Using 3 Full-Adders

—{>o—
Bl

(a) Address decoder for 9 (binary 1001)
The output of the AND gate will be 1
if and only if the input is binary 1001.

__\

(b) Address decoder for 5 (binary 0101)
The output of the AND gaie will be 1
if and only if the input is binary 0101.

Figure C-7. Address Decoders

(a) Circuit diagrain

(b) Block diagram

b Cikk D Q
-D"_‘ 0 —1p O— No «x no change
—L_ T 1 0 0
A —Clk
" | 11 1
‘Do_—b‘. U 6 — x=don’t care

(c) Truth table

Figure 0-8. D Flip-Flops

1

Review Questions

[. The logical operation gives a 1 output when all inputs are 1.

2. The logical operation ___ gives a 1 output when 1 or more of its inputs is 1.

3. The logical operation is often used to compare if two inputs have the
same value. -

4. A gate does not change the logic level of the input.

5. Name a common usc for flip-flops.

6. An address is used to identify a pre-determined binary address.

SECTION 0.3: INSIDE THE COMPUTER

In this section we provide an introduction to the organization and internal
working of computers. The model used is generic, but the concepts discussed are
applicable to all computers, including the IBM PC, PS/2, and compatibles. Before
embarking on this subject, it will be helpful to review definitions of some of the

most widely used terminology in computer literature, such as K, mega, giga, byte,
ROM, RAM, and so on.

Some important terminology

One of the most important features of a computer is how much memory it
has. Next we review terms used to describe amounts of memory in IBM PCs and
compatibles. Recall from the discussion above that a bit is a binary digit that can
have the value 0 or 1. A byte is defined as

. ue .y Bit 0
fE b1t§: A)?zbblf is half a‘ l??/te, or 4'b1ts. A Nibble 0000
word is two bytes, or 16 bits. The display is Byte 0000 0000

intenided to show the relative size of these
units. Cf course, they could all be com-
posed of any combination of zeros and
ones.

Word 0000 00GO 0000 0000

A kilobyte is 210 bytes, which is 1024 bytes. The abbreviation K is often
used. For example, some fioppy disks hold 356K bytes of data. A megabyre. or
meg as some call it, is 220 bytes. That is a liitle over 1 million bytes; it is exactiy
1,048,576 bytes. Moving rapidly up the scale in size, a gigabyte is 230 bytes (over
1 billion), and a terabyte is 240 bytes (over 1 trillion). As an example of how some
of these terms are used, suppose that a given computer has 16 megabytes of mem-
ory. That would be 16 x 220, or 24 x 220, which is 224. Therefore 16 megabytes is
224 bytes. '

Two types of memory commonly used in microcomputers are RAM, which
stands for “random access memory” (sometimes called read/write memory), and
ROM, which stands for “read-only memory.” RAM is used by the ccmputer for
temporary storagc of programs that it is running. That data is lost when the com-
puter is turned off. For this reason, RAM is sometimes called volatile memory.
ROM contains programs and information essential to operation of the compuier.
The information in ROM is permanent, cannot be changed by thc user, and is not
lost when the power is turned off. Therefore, it is called nonvolatile memory.

CHAPTER 0: INTRODUCTION TO COMPUTING | 13

Internal organization of computers

The internal working of every computer can be broken down into three
parts: CPU (central processing unit), memory , and 1/0 (input/output) devices (see
Figure 0-9). The function of the CPU is to execute (process) information stored in
memory. The function of /O devices such as thc keyboard and video monitor is
to provide a means of communicating with the CPU. The CPU is connected to
memory and I/O through strips of wire called a bus. The bus inside a computer car-
ries information from place to place just as a street bus carries pecple from place
to place. In every computer there are three types of buses: address bus, data bus,
and control bus. :

For a device (memory or [/O) to be recognized by the CPU, it must be
assigned an address. The address assigned to a given device must be unique; no
two devices are allowed to have the same address. The CPU puts the address (of
course, in binary) on the address bus, and the decoding circuitry finds the device.
Then the CPU uses the data bus either to get data from that device or to send daia
to it. The control buses are used to provide read or write signais to the device to
indicate if the CPU is asking for information or sending it information. Of the
three buses, the address bus and data bus determine the capability of a given CPU.

Address Bus
Memory Peripherals
CcpU
, ‘ (monitor,
(RAM, ROM) printer, etc.,
Data Bus

Figure 0-9: Inside the Computer

More abcut the data bus

Since data buses are used to carry information in and out of a CPU; the
more data buses available, the better the CPU. If one thinks of data buses as high-
way lanes, it is clear that more lanes provide a better pathway between the CPU
and its external devices (such as printers, RAM, ROM, etc.; see Figure 0-10). By

~ the same token, that increase in the number of lanes increases the cost of con

struction. More data buses mean a more expensivgCPU and computer. The aver
age size of data buses in CPUs varies between 8 and 64. Early computers such a
Apple 2 used an 8-bit data bus. while supercomputers such as Cray use a 64-bi
data bus. Data buses are “:directional, since the CPU must use them either tc
receive or to send data. The processing power of a computer is related to the szt
of its buses, since an 8-bit bus can send out 1 byte a time, but a 16-bit bus can sen
out 2 bytes at a time, which is twice as fast.

14

More about the address bus

Since the address bus is used to identify the devices and memory connect-
ed to the CPU, the more address buses available, the larger the number of devices
that can be addressed. In other words, the number of address buses for a CPU
determines the number of locations with which.it can communicate. The number
of locations is always equal to 2¥, wherc x is the number of address lines, regan -
less of the size of the data bus. For example, a CPU with 16 address lines can pro-
vide a total of 65,536 (210) or 64K bytes of addressable memory. Each location
can have a maximum of 1 byte of data. This is due to the fact that all general-pur-
pose microprocessor CPUs are what is called byte addressable. As another exam-
ple, the IBM PC AT uses a CPU with 24 address lines and 16 data lines. In this
case the total accessible memory is 16 megabytes {224 = 16 megabytes). In this
example therc would be 224 |ocations, and since each location is one byte, there
would be 16 mcgabytes of memory. The address bus is a unidirectional bus,
which means that the CPU uses the address bus only to send out addresses. To
summarize: The total number of inemory locations addressable by a given CPU is

always equal to 2* where x is the number of address bits, regardiess of the size of
the data bus.

Address Bus

j j B Y ¥ }
RAM | [ROM | | Printer || Disk | | Monitor Keyboard

CPU) [| P F il ' X

Data Bus

Read/write

Control Bus

Figure 0-10: Internal Organization of Compiiters

CPU and its relation to RAM and ROM

For the CPU to process information, the data must be stored iu RAM or
ROM. The function of ROM in computers is to provide information that is fixed
and permanent. This is information such as tables for character patterns to be dis-
played on the video monitor, or programs that are essential to the working of the
computer, such as programs for testing and finding the total amount of RAM
installed on the system, or programs to display information on the video monitor.
In contrast, RAM is used to store information that is not permanent and can change
with time, such as various versions of the cperating system and application pack-
ages such as word processing or tax calculation packages. These programs are
loaded into RAM to be processed by the CPU. The CPU cannot get the informa-

CHAPTER 0: INTRODUCTION TO COMPUTING 15

tion from the disk directly since the disk is too siow. In other words, the CPU gets N
the information to be processed, first from RAM (or ROM). Only if it is not there
does the CPU seek it from a mass Storage device such as a disk, and then it trans-
fers the information to RAM. For this reason, RAM and ROM are sometimes
refe;red 1o as primary memory and disks are called secondary memory. Figure O-
i1 shov:s a block diagram of the internal organization of the PC.

inside CPUs

+. program stored in memory provides instructions to the CPU io petform
an action. The action can simply be adding data such as payroll data ot control-
ling a machine such as a robot. It is the function of the CPU to fetch these instruc-
tions from memory and execute them. To perform the actions of fetch and execute,
all CPUs are equipped with resources such as the following:

1° Foremost among the resources at the disposal of the CPU are a number of reg-
isters. The CPU uses registers to store information temporarily. The informa-
tion could be two values to be processed, or the address of the value needed to
he fetched from memory. Registers inside the CPU can be 8-bit, 16-bit, 32-bit,
or cven 64-bit registers, depending on the CPU. In general, the more and big-
ger the registers, the better the CPU. The disadvantage of more and bigger reg-
isters is the increased cost of such 2 CPU.

9 The CPU also has what is called the ALU (arithmetic/logic unit). The ALU
scetion of the CPU is responsible for performing arithmetic functions such as
add, subtract, multiply, and divide, and logic functions such as AND, OR, and
NOT.

3. Fvery CPU has what is called a program countzr. The function of the program
countet is to point to the address of the next instruction to be executed. As each
instruction is executed, the program counter is incremented to point to the
address of the next instruction to be executed. It is the contents of the program
counter that are placed on the address bus to find and fetch the desired instruc-
tion. In the IBM PC, the program counter is a register called IP, or the instruc-
lion pointer.

4 ‘The function of the instruction decoder is to interpret the instruction fetched
into the CPU. One can think of the instruction decoder as a kind of dictionary,
storing the meaning of each instruction and what steps the CPU should take
upon receiving a given instruction. Just as a dictionary requires more pages the
more words it defines, a CPU capable of understanding more instructions
requires more transistors to design. T

Internal working of computers

To demonstrate some of the concepts discussed above, a step-by-step
analysis of the process a CPU would go through to add three numbers is given
next. Assume that an imaginary CPU has registers called A, B, C,and D. It has an
8-bit data bus and a 16-bit address bus. Thercfore, the CPU can access memory
from addresses 0000 to FFFFH (for a total of 10000H locations). The action to be
performed by the CPU is to put hexadecimal value 21 into register A, and then add
to register A values 42H and 12H. Assume that the code for the CPU to move a

16

value to register A is 1011 0000 (BOH) and the code for adding a value to register
A is 0000 0100 (04H). The necessary steps and code to perform them are as fol-

lows.
Action Code Data
Move value 21H into register A BOH 21H
Add value 42H tu register A 04H 424
add value 12H to register A 04H 12H

Lf the program to perform the actions listed above is stored in memory
locations starting at 1400H, the following would represent the contents for each
memory address location:

Memory address ?bntents of memory address

140C (0)code for moving a value to register A
1401 (21)value to bc moved

1402 (C4)code for adding a value to register A
1403 : (42)value to be added

1404 (04) code for adding a value to register A
1405 (12)value to be added

1406 (F4) code for halt

The actions performed by the CPU to run the program above would be as
follows:)

1. The CPU’s program counter can have a value between 0000 and FFFFH. The
program counter must be set to the value 1400H, indicating the address of the
tirst instruction code to be cxecuted. After the program counter lias been
loaded with the address of the first instruction, the CPU is ready to execute.

2. The CPU puts 1400H on the address bus and sends it out. The memory cir-
cuitry finds the location while the CPU activates the READ signal, indicating
to memory that it wants the byte at location 1400H. This causes the contents
of memory location 1400H, which is B0, to be put on the data bus and brought
into the CPU. _

3. The CPU decodes the instruction BO with the help of its instruction decoder
dictionary. When it finds the definition for that instruction it knows it must
bring into register A of the CPU the byte in the next memory location.
Therefore, it commands its controller circuitry to do exactly that. When it
brings in value 21H from memory location 1401, it makes sure that the doors
of all registers are closed except register A. Therefore, when valu€ 21H comes
into the CPU it wiil go directly into register A. After completing one instruc-
tion, the program counter points to the address of the next instruction to be exe-
cuted, which in this case is 1402H. Address 1402 is sent out on the address bus
to fetch the next instruction.

4. From memory location 1402H it fetches code 04H. After decoding, the CPU
know: that it must add to the contents of register A the byte sitting at the next
address (1403). After it brings the value (in this case 42H) into the CPU, it pro-
vides the contents of register A along with this value to the ALU to perform
the addition. It then takes the result of the addition from the ALU’s output and

CHAPTER 0: INTRODUCTION TO COMPUTING 17

puts it in register A. Meanwhile the program counter becomes 1404, the
address of the next instruction.

Address 1404H is put on the address bus and the code is fetched into the CPU,
decoded, and executed. This code is again adding a value to register A. The
program counter is updated to 1406H. .

Finally, the contents of address 1406 are fetched in and executed. This HALT
instruction tells the CPU to stop incrementing the program counter and asking
for the next instruction. In the absence of the HALT, the CPU would continue
updating the prcgram counter and fetching instructions.

Now suppose that address 1403H contained value 04 instead of 42H. How
would the CPU distinguish between data 04 to be added and code 04? Remeinber
that code 04 for this CPU means move the next value into register A. Therefore,
the CPU will not try to decode the next value. It simply moves the contenis of the
following memory location into register A, regardless of its value.

L9 1Y

I

=

Program Counter

Flags ALU Instruction Register
; Instruction

— and control

sng SSaIppy

decoder, timing, ——

Internal
buses

Register A

Register B

Register C
Register D

i

sesng [0NU0D

sng eied

Figure 0-11: Internal Block Diagram of a CPU

Review Questions

B

How many bytes is 24 kilobytes?
What does “RAM” stand for? How is it used in computer systems?
What does “ROM?” stand for? How is it used in computer systems?
%, Why is RAM called volatile memory?

List the three major components of a computer system.

6. What does “CPU” stand for? Explain its function in a computer.

D B

N

18

7. List the three types of buses found in computer systems and state briefly the
purpose of each type of bus. ' '

8. State which of the following is unidiiectional and whicli is bidirectional.
(a) data bus (b) address bus

9. If an address bus for a given computer has 16 lines, what is the maximuin
amount cf memory it can access?

10. What docs “ALU" stand for? What is its purpose?

11. How are registers used in computer systems?

12. What is the purpose of the program counter?

13. What is the purpose of the instruction decoder?

SUMMARY

The binary number system represents all numbers with a combination of
the two binary digits, 0 and 1. The use of binary systems is necessary in digital
computers because only two states can be represented: on or off. Any binary num-
ber can be coded dircctly into its hexadecimal equivalent for the convenience of
humans. Converting from binary/hex to decimal, and vice versa, is a straightfor-
ward process that becomes easy with practice. The ASCII code is a binary code
used to represent alphanumeric data internally in the computer. it is frequently
used in periphera! devices for input and/or cutput.

The logic gates AND, OR, and Inverter are the basic building blocks of
simple circuits. NAND, NOR, and XOR gates are also used to implement circuit
design. Diagrams of half-adders and full-adders were given as examples of the use
of logic gates for circuit design. Decoders are used to detect ccrtain addresses.
Flip-flops are used to laich in data until other circuits are ready for it.

The major components of any computer syster are the CPU, memory, and
1/O devices. “Memory” refers to temporary ot permanent storage of data. In most
systems; memory can be accessed as bytes or words. The terms kilobyte,
megabyte, gigabyte, and rerabyte are used to refer to large numbers of bytes. There
are two main types of mcmory in computer systems: RAM and ROM. RAM (ran-
dom access memory) is used for temporary storage of programs and data. ROM
(read-only memory) is used for permanent storage of programs and data that the
computer system must have in order to function. All components of the computer
system are under the control of the CPU. Peripheral devices such as 1/0O (input/out-
put) devices allow the CPU to commuricate with humans or other computer sys-
tems. There are three types of buses in computers: address, control, and data.
Control buses aie used by the CPU to direct other devices. The address bus is used
by the CPU to locate 2 device or a memory location. Data buses are used to send
‘nformation back and forth between the CPU and other devices.

Finally, this chapter gave an overview of digital logic.

_C_HAPTER 0: INTRGDUCTICN TO COMPUTING 19

PROBLEMS

SECTION 0.1: NUMBERING AND CODING SYSTEMS

1.

(98]

W

9.
10.

Convert the following decimal numbess to binary.
(a) 12 (b) 123 (c) 63 (d) 128 (e» 1000
Convert the following binary numbers to decimal.
(a) 100100 (b) 1000001 (c) 1110} (d) 1010 (e) 00100010
Convert the values in Problem 2 to hexadecimal.
Convert the following hex numbers to binary and decimal.
(a) 2B9H (b) F44H (c) 912H (d)2BH (e) FFFFH
Convert the values in Problem 1 to hex.
Find the 2’s complement of the following binary numbers.
(a) 1001010 (b) 111001 (c) 10000010 (d) 1111100C1
Add the following hex valucs.
(a) 2CH+3FH (b) F34H+5D6H (c»20000H+12FFH (d) FFFFH+2222H
Perform hex subtraction for the following.
(a) 24FH-129H (b) FE9H-SCCH (c) 2FFFFII-FFFFFH (d) 9FF25H-
4DD99H

Show the ASCII codes for numbers 0. 1. 2, 3, ..., 9 in both hex and binary.
Show the ASCII code (in hex) for the tollowmg string:

“U.S.A. is a country” CR,LF

“in North America” CR,LF

CR is carriage return

LF is linc feed

SECTION 0.2: DIGITAL PRIMER

11.
12.

13.
14.
15.

16.
17.
18.
19.
20.

Draw a 3-input OR gate using a 2-input OR gate.
Show the truth table for a 3-input OR gate.

Draw a 3-input AND gate using a 2-input AND gate.
Show the truth table for a 3-input AND gate.

Design a 3-input XOR gate with a 2-input XOR gate. Show the truth table for
a 3-input XOR.

List the truth table for a 3-input NAND.

List the truth table for a 3-input NOR.

Show the decoder for binary 1100.

Show the decoder for binary 11011.

List the truth table for a D-FF.

SECTION 0.3: INSIDE THE COMPUTER

21.

Answer the following:

(a) How mau nibbles are 16 bits?

(b) How many bytes are 32 bits?

(c¢) If a word is defined as 16 bits, how many words is a 64-bit data item?
(d) What is the exact value (in decimal) of 1 meg?

20

22

23.

25.

26.

O O 0

2
29.
3

(¢) How many K is | meg?

(f) What is the exact value (in decimal) of i giga?

(g) How many Kis 1 giga?

(h) How many meg is | giga?

(i) Ifa given computer has a total of 8 megabytes of memory, how many

bytes (in decimal) s this? How many kilobytes is this?
. A given mass storage device such as a hard disk can store 2 gigabytcs of infor-
mation. Assuming that each page of text has 25 rows and cach row has 80
columns of ASCII characters (each character = 1 byte), approximately how
many pages of information can this disk store?
In a given byte-addressable computer, memory locations 10000H to 9FFFFH
are available for user programs. The first location is 10000H and the last loca-
tion is 9FFFFH. Calculate the following:
(a) The total number of bytes available (in decimal)
(b) The total number of kilobytes (in decimal)
. A given computer has a 32-bit data bus. What is the largest number that can
be carried into the CPU at a time?
Below are listed several computers with their data bus widths. For each com-
puter, list the maximum value that can be brought into the CPU at a time (in
both hex and decimal).
(a) Apple 2 with an 8-bit data bus
(b) IBM PS/2 with a 16-bit data bus
(c) IBM PS/2 model 80 with a 32-bit data bus
(d) CRAY supercomputer with a 64-bit data bus
Find the total amount of memory, in the units requested, for each of the fol-
lowing CPUs, given the size of the address buscs.
() 16-bit address bus (in K)
(b) 24-bit address bus (in meg)
(c) 32-bit address bus (in megabytes and gigabytes)
(d) 48-bit address bus (in megabytes, gigabytes, and terabytes)
. Regarding the data bus and address bus, which is uniairectional and whici 1s
bidirectional?

. Which register of the CPU holds the address of the instruction to be fetched?
Which section of the CPU is responsible for performing addition?
. List the three bus types present in every CPU.

ANSWERS TO REVIEW QUESTIQONS

SECTION 0.1: NUMBERING AND CODING SYSTEMS

1.

SRSV

Computers use the binary system because each bit can have one of two voltage levels: on and
off.

34,4 = 1000105 =224
110101, = 35,6 = 5319
1110001

010100

461

275

38 30 78 38 36 20 43 50 55 73

CHAPTER 0: INTRODUCTION TO COMPUTING

21

SECTION 0.2: DIGITAL PRIMER

L.
3.
S.
6.

AND 2. OR
XOR : 4. Buffer
Storing data

Decoder)

SECTION 0.3: INSIDE THE COMPUTER

1.

9

(V3]

©w

10.
1.
12
13.

24,576

Random access memory; it is used for temporary storage of programs that the CPU is run-
ning, such as the operating system, word processing programs, etc.

Read-only memorys; it is used for permarnent programs such as those that control the keyboard,
etc.

The conients of RAM are lost whet: the computer is powered off.

The CPU, memory, and 1/0 devices

Central processing unit; it can be considered the “brain” of the computer; it executes the pro-
grams and controls all other devices in the computer.

The address bus carries the location (address) needed by the CPU; the data bus carries infor-

mation in and out of the CPU; the control bus is used by the CPU to send signals controlling
I/O devices.

(a) bidirectional (b) unidirectional

64K, or 65,536 bytes

Arithmetic/logic unit; it performs all arithmetic and logic operations.
It is for temporary storage of information.

It holds the address of the next instruction to be executed.

[t telis the CPU what steps to perform for each instruction.

22

CHAPTER 1

MICROCONTROLLERS

THE 80351

OBJECTIVES

Upon completion of this chapter, you wiil be able to:

=3
>
=3
>3
>

=3
S>>

Compare and contrast microprocessors and microcontroilers
Describe the advantages of microcontrollers for some applications
Explain the concept of embedded systems -

Discuss criteria to consider in choosing a microcontroller

Explain the variations of speed, packaging, memory, and

cost per unit and how these affect choosing a microcontroller ™
Compare and contrast the various members of the 8051 family
Compare 8051 microcontrollers offered by various manufacturers

~

23

This chapter begins with a discussioa of the role and importance of micro-
controllers in everyday life. In Section 1.1 we also discuss criteria to consider in
choosing a microcontroller, as well as the use of microcontrollers in the embed-
ded market. Section 1.2 covers various members of the 8051 family such as the
8052 and 8031, and their features. In addition, we discuss various versions of the
2051 such as the 8751, AT89C51, and DS5000. -

SECTION 1.1: MICROCONTROLLERS AND EMBEDDED
PROCESSORS

In this scction we discuss the need for microcontrollers and contrast them
with general-purpose microprocessors such as the Pentium and other x86 micro-
processors. We also look at the role of microcontrollers in the embedded market.
In addition, we provide some criteria on how to choose a microcontroller.

Microcontroller versus general-purpose microprocessor

What is the difference between a microprocessor and microcontroller? By
microprocessor is meant the generaj-purpose microprocessors such as Intel’s x86
family (8086, 80286, 80386, 80486, and the Pentium) or Motorola’s 680x0 fami-
ly (68000, 68010, 68020, 68030, 68040, etc.). These miCroprocessors contain no
RAM, no ROM, and no I/O ports on the chip itself. For this reason, they are com-
monly referred to as general-purpose microprocessors. '

Data bus

CPU | CPU | RAM| ROM
|

General- Serial

Purpose RAM ||ROM | | /O | | Timer| | COM

Micro- Port Port /0 Timer | Serial

processor COM:

Port

Address bus

2) General-Purpose Microprocessor System (b) Microcontroller

Figure 1-1. Microprocessor System Contrasted With Microcontroller System

A system designer using a general-purpose microprocessor such as the
Pentium or the 68040 must add RAM, ROM, 1/O ports, and timers externally to
make them functional. Although the addition of external RAM, ROM, and /O
ports makes these systems bulkier and much more expensive, they have the advan-
tage of versatility such that the designer can decide on the amount of RAM, ROM,
and I/O ports needed to fit the task at hand. This is net the case with microcon-
trollers. A microcontrolier has a CPU (a microprocessor) in addition to a fixed
amount of RAM, ROM, I/O ports, and a timer all on a single chip. In other words,
the processor, the RAM, ROM, /O ports. and timer are all embedded together on
one chip; therefore, the designer cannot add any external memory, /G, ot timer to
it. The fixed amount of on-chip ROM, RAM, and number of 1/O ports in micro-
controllers makes them ideal for many applications in which cost and space are

24

Home

Appliances
Intercom
Telephcnes

Security systems
(arage door openers
Answering machines
Fax machines
Home computers
TVs

Cable TV tuner
VCR

Camncorder

Remote controls
Video games
Cellutar phones
Musical instruments
Sewing machines
Lighting control
Paging

Camera

Pinball machines
Toys

Exercise equipment
Office

Telephones
Computers
Security sysiems
Fax uiachine
Microwave
Copier

Laser printer
Color printer
Paging

Auto

Trip computer
Engine control
Air bag

ABS
Instrumentation
Security system
Transmission control
Entertainment
Climate control
Cellular phone
Keyless entry

Table 1-1: Some
Embedded Products
Using
Microcontrollers

critical. In iany applications, for example a TV remote control,
there is no need for the computing power of a 486 or even an 8086
microprocessor. In many applications, the space it takes, the
power it consumes, and the price per unit are much more critical
considerations than the computing power. These applications
most often require some [/O operations to read signals and turn on
and off certain bits. For this reason some call these processors
IBP. “itty-bitty processors” (see “Good Things in Small Packages
Are Generating Big Product Opportunities” by Rick Grehan,
BYTE magazine, September 1994; www.byte.com, for an excel-
lent discussion of microcontrollers).

It is interesting to note that some microcontroller manu-
facturers have gone as far as integrating an ADC (analog-to-digi-
tal converter) and other peripherals into the microcontroller.

Micrccontroliers for embedded systems

In the literature discussing microprocessors, we often see
the term embedded syster1. Microprocessors and microcontrollers
are widely used in embedded system products. An embedded
product uses a microprocessor (or microcontroller) to do one task
and one task only. A printer is an example of embedded system
since the processor inside it performs one task only; namely, get-
ting the data and printing it. Contrast this with a Pentium-based
PC (or any x86 IBM-compatible PC). A PC can be used for any
number of applications such as word processor, print-server, bank
teller terminal, vidco game player, network server, or internet ter-
minal. Software for a variety of applications can be loaded and
run. Of course ihe reason a PC can perform myriad tasks is that it
has RAM memory and an operating system that loads the appli-
cation software into RAM and lets the CPU run it. In an embed-
ded system, there is only oiic application software that is typical-
Iy burned into ROM. An x86 PC contains or is connected to var-
tous embedded products such as the keyboard, printer, modem,
disk controller, sound card, CD-ROM driver, mouse, and so on.
Each one of these peripherals has a microcontroller inside it that
performs only one task. For example, inside every mouse there is
a microcontroiler to perform the task of finding the mouse posi-

‘tion and sending it to the PC. Table 1-1 lists some embedded

products.

X86 PC embedded applications

Although microcontrollers are the preferred choice for
many embedded systems, there are times that a microcontroller is
inadequate for the task. ror this :cason, in recent years many
manufacturers of general-purpose microprocessors such as Intel,
Motorola, AMD (Advanced Micro Devices, Inc.), and Cyrix
(now a division of National Semiconductor, Inc.) have targeted

CHAPTER 1: THE 8051 MICROCONTROLLERS 25

their microprocessor for the high end of the embedded market. While Intel, AMD,
and Cyrix push their x86 processors for both the embedded and desk-top PC mar-
kets, Motorola is determined to keep the 68000 family alive by targeting it main-
ly for the high end of embedded systcms now that Apple no longer uses the 680x0
in their Macintosh. In the early 1990s Apple computer began using Power PC
microprocessors (604, 603, 620, etc.) in place of the 680x0 for the Macintosh. The
Power PC microprocessor is a joint venture between IBM and Motorola, and is
targeted for the high end of the embedded market as wel] as the PC market. It must
be noted that when a company targets a general-purpose microprocessor for the
embedded market it optimizes the processor used for embedded systcms. For this
reason these processors are often called high-end embedded processors. Very often
the terms embedded processor and microcontroller are used interchangeably.

One of the most critical needs of an embedded system is to decrease power
consumption and space. This can be achieved by integrating more functions into
the CPU chip. All the embedded processors based on the x86 and 680x0 have low
power consumption in addition to some forms of I/0, COM port, and ROM all on
a single chip. In high-performance embedded processors, the trend is to integrate
more and more functions on the CPU chip and let the designer decide which fea-
tures he/she wants to use. This trend is invading PC system design as well.
Normally, in designing the PC motherboard we need a CPU plus a chip-set con-
taining I/O, a cache controller, a flash ROM containing BIOS, and finally a sec-
ondary cache memory. New designs are emerging in industry. For example, Cyrix
has announced that it is working on a chip that contains the entire PC, except for
DRAM. In other words, we are about to see an entire computer on a chip.

Currently, because of MS-DOS and Windows standardization many
embedded systems are using x86 PCs. In many cases using x86 PCs for the high-
end embedded applications not only saves inoney but also shortens dcvelopment
time since there is a vast library of software already written for the DOS and
Windows platforms. The fact that Windows is a widely used and well understood
platform means that developing a Windows-based embedded product reduces the
cost and shortens the development time considerably.

Choosing a microcontroller

There-are four major 8-bit inicrocontrollers. They are: Motorola’s 6811,
Intel’s 8051, Zilog’s Z&, and PIC 16X from Microchip Technology. Each of the
above microcontrollers has a unique instruction set and register set; therefore, they
are not compatible with each other. Programs written for one will not run on the
others. There are also 16-bit and 32-bit microcontrollers made by various chip
makers. With all these different microcontrollers, what criteria do designers con-
sider in choosing one? Three criteria in choosing microcontrollers are as follows:
(1) meeting the computing needs of the task at hand efficiently and cost effective-
ly, (2) availability of software development tools such as compilers, assemblers,
and debuggers, and (3) wide availability and reliablc sources of the microcon-
trollei. Next we elaborate further on each of the above criteria.

26

Criteria for choosing a microcontroller

1. The first and foremost criterion in choosing a microcontroller is that it must
meet the task at hand efficiently and cost effectively. In analyzing the needs of
a microcontroller-based project, we must first see whether an 8-bit, 16-bit, or
32-bit microcontroller can best handle the computing nceds of the task most
cilectively. Among other considerations in this category are:

(a) Speed. What is the highest speed that the microcontroller supports?

(b) Packaging. Does it come in 40-pin DIP (dual inline package) or a QFP
(quad flat package), or some other packaging format? This is important in
terms of space, assembling, and prototyping the end product.

(c) Power consumption. This is especially critical for battery-powered prod-
ucts.

(d) The amount of RAM and ROM on chip.

(2) The number of i/O pins and the timer on the chip.

() How ecasy it is to upgrade to higher-performance or lower power-con-
sumption versions.

(g) Cost per unit. This is important in terms of the final cost of the product in
which a microcontroller is used. For example, there are microcontrollers
that cost 50 cents per urit when purchased 100,000 units at a time.

2. The second criterion in choosing a microcontroller is how easy it is to devel-
op products around it. Key considerations include the availability of an assem-
bler, debugger, a code-efficient C language compiler, emulator, iechnical sup-
port, and both in-house and outside expertise. In many cases, third-party ven-
dor (that is, a supplier other than the chip manufacturer) support for the chip is
as good as, if not better than, support from the chip manufacturer.

I

The third criterion in cheosing a microcontroller is its ready availability in
needed quantities both now and in the future. For some designers this is even
more important than the first iwo criteria. Cwirently, of the leading &-bit micro-
controllers, the 8051 family has the largest number of diversified (multiple
sourcc) suppliers. By supplier is meant a producer besides the originator of the
Table 1-2: Some Companies Preducing a Member of ~ microcontroller. In the case
the 8051 Family of the 8051, which was orig-

: inated by Intel, several com-

Company Web Site panies also currently pro-
Intel www.intel.com/design/mes51 duce (or have produced in
Atr.n.el . . - www.atm(?l.com . the past) the 8051. These
Philins/Signetics www.semiconductors.philips.com companies include: Intel
Siemens WWwWw.sci.siemens.com. _ Atmel, Philips/Signetics,

Dallas Semiconductor www.dalsemi.com -

AMD, Siemens, Matra, and
Dallas Semiconductor.

[t shou!d be noted that Motorola, Zilog, and Microchip Technology have
ali dedicated :nassive resources to ensure wide and timely uvailability of their
product since their product is stable, mature, and single sourced. In recent years
they also have begun to sell the ASIC library cell of the microcontroller.

CHAPTER 1: THE 8051 I_’!ICROCONTROLLERS 27

Review Qiiestions

[. True or false. Microcontrollers are nuimally less expensive than microproces-
SOfs. :
When comparing a system board based on a microcontroller and a general-pur-
pose microprocessor, which one is cheaper? -
. A microcontroller normally has which of the following devices on-chip?
(a) RAM (b) ROM : (c) I/O (d) all of the above

4.~ A general-purpose microprocessor normally needs which of the following

devices to be attached to it?

(a) RAM . (b) RCM (c) /O (d) all of the above
5. An embedded system is also called a dedicated system. Why?
What does the term embedded system mean?
7. Why dces having multiple sources of a given product matter?

[\

(OS]

&

- SECTION 1.2: OVERVIEW OF THE 8051 FAMILY

[n this section we first look at the various members of the 8051 family of
microcontrollers and their internal features. Plus we see who are the different man-
ufacturers of the 8051 and what kind of products they offer.

A brief history of the 8051

In 1981, Intel Corporation introduced an 8-bit microcontroller called the
8051. This microcontroller had 128 bytes of RAM, 4K bytes of on-chip ROM, two
timers, one serial port, and four ports (each 8-bits wide) all on a single chip. At the
time it was also referred to as a “system on a chip.” The 8051 is an 8-bit proces-
sor, meaning that the CPU can work 'on only & bits of data at a time. Data larger
than 8 bits has to be broken into 8-bit pieces to be processed by the CPU. The
8051 has a total of four I/O ports, each 8 bits wide. See Figure 1-2. Although the
8051 can have a maximum of 64K bytes of on-chip ROM, many manufacturers
have put orily 4K bytes on the chip. This will be discussed in more detail later.

The 8051 became widely popular after Intel allowed other manufactureis
to make and market any fiavor of the 8051 they piease with ihe condition that they
remain code-compatible with the 8051. This has led to many versions of the 8051
with different speeds and amounts of on-chip ROM marketed by more than half a
dozen manufacturers. Next we review some of them. It is important to note that
although there are different flavors of the 8051 in terms Typle 1-3: Features of the 8051
of speed and amount of on-chip ROM, they are all com- -

patible with the original 8051 as far as the instructions are Feature Quantity
concerned. This means that if you write your program for ROM 4K bytes
one, it will run on any one of them regardless of the man- RAM 128 bytes
ufacturer. Timer 2

I/O pins 32
8051 microcontroller Serial port 1

The 8051 is the original member of the 8051 fam- Inicrrupt sources 6

Note. ROM amount indicates on-chip

ily. Intel refers to it as MCS-51. Table 1-3 shows the main program space.

features of the 8051.

28

EXTERNAL

INTERRUPTS
\ \ ON-CHIP 9
Y Y ROM =
INTERRUPT |=<———| for ¥ ETC. 2
CONTROL |~~~ | program ON-CHIP TIMER 0 I~ -} gy
—1" code RAM TIMER 1 |=< =
—
wn
ceu ! |
| . N
BUS 41/0 SERIAL
0sC CONTROL PORTS PORT
oo Y R,
L] e | . '
1 D*ﬁ Y Y ' \
+ = PO P1 P2 P3 TXD RXD
ADDRESS/DATA

Figure 1-2. Inside the 8051 Microcontroller Block Diagram

Other members of the 8051 family

There are two other members in the 8051 family of microcontrollers. They
are the 8052 and the 8031.

8052 microcontroller

The 2052 is another member of the 8051 family. The 8052 has all the stan-
dard features of the 8051 in addition to an extra 128 bytes of RAM and an extra
timer. In other words, the 8052 has 256 bytes of RAM and 3 timers. [t also has-8K
bytes of on-chip program ROM instead of 4K bytes. See Tabic 1-4.

Table 1-4: Comparison of 8051 Family Members

Feature 8051 3052 8031
ROM (on-chip program space in bytes) 4K 8K 0K
RAM (bytes) _ 128 256 128
Timers 2 3 2
1/O pins 32 32 32
Serial port I" 1 |
Interrupt sources 6 8 6
As can be seen froi. Table 1-4, the 8051 is a subset of the 5052; thev-fore,

all programs written for the 8051 will run on the 8052, but the reverse is not true.

CHAPTER 1: THE 8051 MICROCONTROLLERS 29

8031 microcontroller

Another member of the 8051 family is the 8031 chip. This chip is often
referred to as a ROM-less 8051 since it has OK bytes of on-chip ROM. To use this
chip you must add external ROM to it. This external ROM must contain the pro-
gram that the 8031 will fetch and execute. Contrast that to the 8051 in which the
on-chip ROM contains the program (o be fetched and executed but is limited (o
only 4K bytes of code. The ROM containing the program attached to the 8031 can
be as large as 64K bytes. In the process of adding external ROM to the 8031, you
lose two ports. That leaves only 2 ports (of the 4 ports) for 1/O operations. To solve
this problem, you can add external 1/0 to the 8031. Interfacing the 8031 with
memory and 1/O ports such as the 8255 chip is discussed in Chapter i4. There are
also various speed versions of the 8031 available from different companies.

Various 8051 microcontrollers

Although the 8051 is the most popular member of the 8051 family, you will
not see “8051” in the part number. This is because the 8051 is available in differ-
ent memory types, such as UV-EPROM, flash, and NV-RAM, all of which have
different part numbers. A discussion of the various types of ROM will be given in
Chapter 14. The UV-EPROM version of the 8051 is the 8751. The flash RCM ver-
sion is marketed by many companies including Atmel Corp. The Atmel Flash
8051 is called AT89CS1. The NV-RAM version of the 8051 made by Dalias
Semiconductor is called DS5000. There is also the OTP (one-time programmable)
version of the 8051 madc by various manufacturers. Next we discuss briefly each
of the above chips and describe applications where they are used.

8751 miicroccntroller

This 8751 chip has only 4K byies of on-chip UV-EPROM. To use this chip
for deveiopment requires access to a PROM burner, as well as a UV-EPROM eras-
er to erase the contents of UV-EPROM inside the 8751 chip before you <an pro-
gram it again. Due to the fact that the on-chip ROM for the 8751 is UV-EPROM,
it takes around 20 minutes to crase the 8751 before it can be programmed again.
This has led many manufacturers to introduce flash and NV-RAM versicns of the
3051 as we will discuss next. There are alsc various speed versions of the 8751
available from different companies.

AT89C51 from Atmel Corporation

This popular 8051 chip has on-chip ROM in the form of flash memory.
This is ideal for fast development since flash memory can be erased in séconds
compared to the twenty minutes or more needed for the 8751. For this reason the
AT89CS1 is used in place of the 8751 to eliminate the waiting time needed to erase
the chip and thereby speed up the development time. To use the AT89CS1 to devel-
op 2 microcontrolier-based sysiem requires & ROM burner that supports flash
memory; however, a ROM eraser is not needed. Notice that in flash memory you
must erase the entire c.:lents of ROM in order to program it again. Thix erasing
of flash is done by the PROM burner itself and this is why a separate erascr is not
needed. To eliminate the need for a PROM burner Atmel is working on a version
of the AT89C51 that can be programmed via the serial COM port of an IBM PC.

30

Table 1-5: Versions of 8051 From Atmel (All ROM Flash)

part Number ROM RAM VO pins Timer Interrupt V¢ Packaging
AT89CS 1 4K 128 32 2 6 5V 40
AT89LVS1 4K 128 32 2 6 3V 40
AT89C 1051 1K 64 15 [73 3V 20
AT89C2051 2K 128 15 2 6 3V 20
AT89C52 8K 128 32 3 8 5V 40
ATSOLVS52 8K 128 32 3 8 3V 49

Note: “C” in the part number indicates CMOS.

There are various speed and packaging versions of the above products. See
Table 1-6. For example, notice AT89C51-12PC where “C” before the 51 is for
CMOS, which has a low power consumption, “12” indicates 12 MHz, “P” is for
plastic DIP package, and “C™ is for commercial (vs. “M” for military). Often, the
AT89C51-12PC is ideal for many student projects.

Table 1-6: Various Speeds of 8051 From Atmel

Part Number Spced Pins Packaging Use

AT89C51-12PC 12 MHz 40 DIP plastic _commercial
AT89C51-16PC 16 MHz 40 DIP plastic commercial
AT89C51-20PC 20 MHz 40 DIP plastic _commercial

DS5000 from Dallas Semiconductor

Another popular version of the 8051 is the DS5000 chip from Dallas
Semiconductor. The on-chip ROM for the DS5000 is in the form of NV-RAM.
The read/write capability of NV-RAM allows the program to be loaded into the
on-chip ROM while it is in the system. This can be done even via the serial port
of an IBM PC. This in-system program loading of DS5000 via a PC serial port
makes it an ideal home development system. Another advantage of NV-RAM is
the ability to change the ROM contents one byte at a time. Contrast this with UV-
EPROM and flash memory in which the entire ROM must be erased before it is
programmed again.

Table 1-7: Versions of 8051 From Dallas Semiconductor’s Soft Microcontroller

Part Number ROM RAM I/O pins Timers Interrupts Ve Packaging
DS5000-8 8K 128 32 2 6 5V 40
DS5000-32 32K 128 32 2 6 5V 49
DS5000T-8 8K 128 32 2 6 5V 40
DS5000T-8 32K 128 32 2 6 SV 40

Notes: All ROM are NV-RAM.

134 2k}

I means it has a real-time clock.

Notice that the real-time clock {RTC) is different from the timer. The real-
time clock generates and keeps the time of day (hr-min-sec) and date (yr-mon-day)
even when the power is off.

CHAPTER 1: THE 8051 MICROCONTROLLERS 31

There arz various speed and packaging versions of the DS5000 as showil
in Table 1-8. For example, DS5000-8-8 has 8K NV-RAM and a speed of 8MHz.
Often the DS5000-8-12 (or DS5000T-8-12) is ideal for many student projects.

Table 1-8: Versions of 8051 From Dallas Semiconductor

Part Number " NV-RAM Speed
DS5000-8-8 8K 8 MHz
DS5000-8-12 8K 12 MHz
DS5000-32-8 32K 8 MHz
DS5000T-32-8 32K g MHz (withRTC) -
DS5000-32-12 32K 12 MHz

DSS5000T-8-12 8K 12 MHz ___ (with RTC)

‘OTP version of the 8051

There are also OTP (one-time-programmab‘ae) versions of the 8051 avail-
able from different sources. Flash and NV-RAM versions are typically used for
product development. When a product is designed and absolutely finalized, the
OTP version of the 8051 is used for mass production since it is much cheaper in
terms of price per unit.

8051 family from Philips

Another major producer of the 8051 family is Philips Corporatiof. Indeed,
they have one of the largest selcctions of 8051 microcontrollers. Many of their
products inciude featurcs such as A-to-D converters, D-to-A converters, extended
/O, and both OTF and flash. |

Review Questions

1. Name three features of the 8051.
5 What is the major difference between the 8051 and 8052 microcontrollers?
3. Give the size of RAM in each of the following.
(a) 8051 (b) 8052 (c) 8031
4 Give tiie size of the on-chip ROM in each of the following.
(a) 8051 . (b) 8052 (c) 8031
5. The 8051 is a(n) -bit microprocessor. o
6. State a major difference between the 8751, the AT89C51 and the DS5000.
7. List additional features introduced in the DSS000T that are not present in the
DS5000. ‘ -
8. True or false. The AT89CS 1-12PC chip has a DIP package.
9. The AT89C51-12PC chip can handle a maximum frequency of MHz.
10. The DS5000-32 has K bvtes of on-chip NV-RAM for programs.

SUMMARY

This chapter discussed the role and importance of microcontrollcrs in
everyday life. Microprocessors and microcontrollers were contrasted and com-
pared. We discussed the use of microcontrollers in the embedded market. We also
discussed criteria to consider in choosing a microcontroller such as speed, memo-
ry, I/0, packaging, and cost per unit. The second section of this chapter described
various family members of the 8051, such as the 8052 and 8031, and their featurcs.
In addition. we discussed various versions of the 8051 such as the AT89C51 and
DS5000, which are marketed by suppliers other than Intel.

PROBLEMS

SECTION 1.1: MICROCONTROLLERS AND EMBEDDED PROCESSORS

True or Faise. A general-purpose microprocessor has on-chip ROM.

True or False. A microcontroller has on-chip ROM.

True or False. A microcontroller has on-chip I/O ports.

True or False. A microcontroller has a fixed amount of RAM on the chip.

What components are normally put together with the microcontroiler into a

single chip?

6. Intel's Pentium chips used in Windows PCs need external and
chips to store data and code.

7. List three embedded products attached to a PC.

Why would someone want to use an x86 as an embedded processor?

9. Give the name and the manufacturer of some of the most widely used 8-bit
microcontrollers

10. In Question 9, which one has the most manufacture sources?

11. In a battery-based embedded product, what is the most important factor in
choosing a microcontroller? '

12. In an embedded controller with on-chip ROM, why does the size of the ROM
matter? ,

13. In choosing a microcontroller, how important is it to have a multiple source for
that chip?

i4. What does the term "third-party support” mean? e

15. If a microcontroller architecture has both 8-bit and 16-bit versions, which of

the following statements is true.

(a) The 8-bit software will run on the 16-bif system.

(b) The 16-bit software will run on the 8-bit system.

e

*

SECTION 1.2: OVERVIEW OF THE 8051 FAMILY

16. The 8751 has bytes of on-chip ROM.
17. The AT89C51 has bytes of on-chip RAM.
18. The 8051 has ___ on-chip timer(s).

CHAPTER 1: THE 8051 MICROCONTROLLERS 33

19. The 8052 has bytes of on-chip RAM.

20. The ROMless version of the 8051 uses as the part number.
21. The 8051 family has ____ pins for /0.

22. The 8051 family has circuitry to support serial ports.

23. The 8751 on-chip ROM is of type .

74. The AT8951 on-chip ROM is of type)

25. The DS5000 on-chip ROM is of type

2%. Give the speed and package type for the following chips.
(a) ATS9C51-16PC (b) DS5000-8-12

27. In Question 26, give the amount and type of on-chip ROM.

28. Of the 8051 family, which version is the most cost effective if you arc i
million of them in an embedded product?

29. What is the difference between the 8031 and 80517

30. Of the 8051 microcontrollers, which one is the best for a home d
_enviroament? (You do not have access to a ROM burner).

ANSWERS TO REVIEW QUESTIONS

SECTION L.1: MICRO(‘ONTROLLERS AND EMBEDDED PROCESSORS

True 2. A microcontrolier based system 3.(d) 4. (0
It is dedicated since it is dedicated to doing one type of job.

Embedded system means the processor is embedded into that application.

Having multiple sources for a given part means you are not hostage to one suj
importantly competition among suppliers brings about lower cost for that product

~ oo

SECTION 1.2:°OVERVIEW OF THE 8051 FAMILY

1. 128 bvies of RAM, 4K bytes of on-chip ROM, four 8-bit /O ports.

7. The 2052 has everything that the 8051 has, plus an extra timer, and the on-chip
bytes instead of 4K bytes. The RAM in the 8052 is 256 bytes instead of 128 hvie

3. Both :ae 8051 and the 8031 have 128 bytes of RAM and the 8GS2 has 256 by e

4. (a)<Noytes | (b) SK bytes (c) OK bytes

5. 8

6. The &itference is the type of on-chip ROM. In the 8751 it is UV-EPROM: in the
is flzsh: and in the DS5000 it is NV-RAM.

7. DS3000T has a real-time clock (RTC).

8. True

9. 12

10. 32

34

CHAPTER 2

8051 ASSEMBLY
LANGUAGE
PROGRAMMING

OBJECTIVES

Upon completion of this chapter, you will be able to:

>3
>3
B3
>3
=3
=3
>3
>3
>3
>3
>3
>3
>3

List the registers of the 8051 microcontroller

Manipulate data using the registers and MOV instructions
Code simple 8051 Assembly language instructions

Assemble and run an 8051 program

Describe the sequence of events that occur upon 8051 power-up
Examine programs in ROM code of the 8051

Explain the ROM memory map of the 8051

Detail the execution of 8051 Assembly language instructions
Describe 8051 data types

Explain the purpose of the PSW (program status word) regisfer.
Discuss RAM memory space allocation in tae 8051

Diagram the use of the stack in the 8051

Manipulate the register banks of the 8051

In Section 2.1 we look at the inside of the 8051. We demonstralc seme of
the widely uscd registers of the 8051 with simpie instructions such as MOV and
ADD. In Section 2.2 we examine Assembly language and machine language pro-
gramming and define terms such as mnemonics, opcode, operand, etc. The process
of assembling and creating a ready-to-run program for the 8051 is discussed in
Section 2.3. Step-by-step execution of an 8051 program and the role of the pro-
gram counter are examined in Section 2.4. In Section 2.5 we look at some widely
used Assembly language directives, pscudocode, and data types related to the
8051. In Section 2.6 we discuss the flag bits and how they are affected by arith-
metic instructions. Allocation of RAM memory inside the 8051 plus the stack and

" register banks of the 8051 are discussed in Section 2.7.

SECT‘IION 2.1: INSIDE THE 8051

) [n this section we examine the inajor registers of the 8051 and show their

use with the simple instructions MOV and ADD.
"o 418
"

Registers - ,
D7 “ D6 || DS " D4 “ D3 || D2 “ D1 “ DO

In the CPU, reg-
isters are used to store
information temporarily. That information could be a byte of data to be processed,
or an address pointing to the data to be fetched. The vast majority of 8051 regis-
ters are 8-bit registers. In the 8051 there is only one data type: 8 bits. The 8 bits ¢f
a register are shown in the diagram from the MSB (most significant bit) D7 to the
LSB (least significant bit) DO. With an 8-bit data type, any data larger than 8 bits
must be broken into 8-bit chunks before it is processed. Since there are a large
number of registers in the 8051, we will concentrate on some of the widely used
general-purpose registers and cover special registers in tuture chapters. See

Appendix A.3 for a complete list of 8051 registers.
A
B o
DPTR DPH DPL
RO
Rl PC PC (program counter)
R2
R3 Figure 2-1 (b): Some 8051 16-bit Registers
B R4 -
= The most widely used registers of the 8051 are
A (accumulator), B, R0, R1, R2, R3, R4, RS, R6, R7,
R6 DPTR (data pointer), and PC (program counter). All
of the above registers ar: S-bits, except DPTR and the
i R7 o o C
program counter. The accumulator, register A, is used
for all arithmetic and logic instructions. To understand

Figurc 2-1 (a): Some 8-bit the use of these registers, we will show them in the
Registers of the 8051 context of two simple instructions, MOV and ADD.

36

_. S
MOV instruction .

Simply stated, the MOV iristruction copies data from one location to anoth-
er. It has the following format:

MOV destination, source ;copy source to dest.

This instruction tells the CPU to move (in reality, copy) the source operand
to the destination operand. For exampie, the instruction “MOV A, RO” copies the
contents of register RO to register A. After this instruction is executed, register A
will have the same value as register RO. The MOV insttuction does not affect the
source operand. The {ollowing program first loads register A withwalue S5H (that
is 55 in hex), then moves this value around to various registers inside the CPU.
Notice the “#” in the instruction. This signifies that it is a value. The importance
of this will be discussed soon.

MOV A, #55H ;load value 55H into reg. A

MOV RO, A ;copy contents of A into RO
; (now A=R0=55H) '

MOV R1,A ;copy contents of A into Rl
; (now A=R0=R1=55H)

MOV R2,A ;copy contents of A into R2
;now A=RC=R1=R2=55H)

MOV R3, #95H ;load value 95H into R3
; (now R3=95H)

MOV A, R3 ;copy contents of R3 into A

;now A=R3=95H)

When programming the 8051 microcontroller, the following points should
be noted:
I. Values can be loaded directly into any of registers A, B, or RO - R7. However,
to indicate that it is an immediate value it must be preccded with a pound sign
(#). This is shown next.

MOV 7. #23H ;lcad 23H into A (A=23H)
MOV RO, #12H ;load 12H into RO (RO=12H)
MOV R1, #1FH ;load 1FH into R1 (R1=1FH)
MOV R2, #2BH ;load 2BH into R2 (R2=2BH)-.
MOV B, #3CH ;load 3CH into B (B=3CH)
MOV R7, #9DH ;load 9DH into R7 (R7=9DH)
MOV RS5, #0F9H ;load F9H iQto R5 (R5=F9H)
MOV R6, #12 ;load 12 decimal (= OCH)

;into reg. R6 (R6=0CH)

Notice in instruction *MOV RS, # 0F9H” that there is a need for 0 between
the # and F to indicate that F is a hex number and not a letter. In other words “MOV
RS, #F9H” will cause an error.

CHAPTER 2: 8051 ASSEMBLY LANGUAGE PROGRAMMING " 37

8]

[f values 0 to F are moved into an 8-bit register, the rest of the biis are assumed
to be all zeros. For example, in “MCV " A, 45" the result will bc A = 05; that
is, A = 00000101 in binary.

3. Moving a value that is too large into a register will cause an error.
MOV A, $#7F2H; ILLEGAL: 7F2H > 8 bits (FFH)
MOV R2,456 ;ILLEGAL: 456 > 255 decimal (FFH)

4. To load a value into a register it must be preceded with a pound sign (#).
Otherwise it means to load from a memory lccation. For example “MQV
A, 17H” means to move into A the value held in memory location 17H, which
could have any value. In order to load the value 17H into the accumulator we
must write “MOV A, #17H” with the # preceding the number. Notice that the
absence of the pound sign will not cause an error by the assembler since it is a
valid instruction. However, the result would not be what the programmer
intended. This is a common error for beginning programmers in the 8051.

ADD instruction

The ADD instruction has the following format:

ADD A, source ;ADD the source operand
;to the accumulator

The ADD instruction tells the CPU to add the source byte to register A and
put the result in register A. To add two numbers such as 25H and 34H, each can

be moved to a register and then »4ded together:

MOV A, #25H ;load 25H into A
MOV R2, #34H :load 34H into R2
abD A,R2 ;add R2 to accumulator

; (A = A + R2)

Executing the program above results in A = 59H (25H + 34H = 59H) and
R2 = 34H. Notice that the content of R2 does not change. The program above can
be written in many ways, depending on the registers used. Another way might be:

MOV R5, #25H :load 25H into R5 (R5=25H)

MOV R7, #34H ;load 34H into R7 (R7=34H) -

MOV A, #0 ;load 0 intc A (A=0,clear A)

ADD A,R5 ;add to A content of RS
where A = A +-R5

ADD A,R7 ;add to A content of R7

;where A = A + R7

The program above results in A = 59H. There are always many ways to
write the same program. One question that might come to mind after looking at the
program above, is whether it is necessary to move both data items into registers

38

before adding them together. The answer is no, it is not necessary. Look at the fol-
lowing variation of the same pregram:

MOV A, #25H ;load one operand into A (A=25H)
ADD A, #34H ;add the second operand 34H to A

In the above case, while one register contained one value, the sccond value
followed the instruction as an operand. This is called an immediate operand. The
examples shown so far for the ADD instruction indicate that the source operand
can be either a register or immediate data, but the destination must always be reg-
ister A, the accumulator. In other words, an instruction such as “ADD R2, #12H”
is invalid since register A (accumulator) must be involved in any arithimetic oper-
ation. Notice that “ADD R4, A” is also invalid for the reason that A must be the
destination of any arithmetic operation. To put it simply: In the 8051, register A
must be involved and be the destination for all arithmetic operations. The forego-
ing discussion explains the reason that register A is referred o as the accumulator.
The format for Assembly language instructions, descriptions of their use, and a
listing of legal operand types are provided in Appendix Al

There are two 16-bit registers in the 8051: PC (program counter) and
DPTR (data pointer). The importance and use of the program counter are covered
in Section 2.3. The DPTR register is used in accessing data and is discussed in
Chapter 5 when addressing modes are covered.

Review Questions

1. Write the instructions to meve value 34H into register A and value 3FH into
register B, then add them together. ' ’

2. Write the instructions to add the values 16H and CDH. Place the result in reg-
ister R2.

3 True or false. No value can be moved directly into registers RO - R7.

4 What is the iargest hex value that can be moved into an 8-bit register? What is
the decimal equivalent of the hex value?

5. The vast majority of registers in 8051 are bits.

SECTION 2.2: INTRODUCTION TO 8051 ASSEMBLY PROGRAMMING

In this section we discuss Assembly language format and define some
widely used terminology associated witli Assembly language programming.

While the CPU can work only in binary, it can do so at a very high speed.
However, it is quite tedious and slow for humans to deal with 0s and 1s in order
to program the computer. A program that consists of Os and 1s is called machine
language. In the early days of the computer, ‘programmers coded programs in
machine language. Although the hexadecimal system was used as a more efficient
way to represent bina: numbers, the process of working in machine ¢ » ‘¢ was still
cumbersome for humans. Eventually, Assembly languages were developed which
provided mnemonics for the machine code instructions, plus other features which
made programming faster and less prone to error. The term mnemonic is frequent-
ly used in computer science and engineering literature to refer to codes and abbre-

CHAPTER 2: 8051 ASSEMBLY LANGUAGE PRUGKRAMIVUNG 39

viations that are relatively easy to remember. Assembly language programs must:
be translated into machine code by a program called an assembler. Assembly lan-
guage is referred to as a low-level language because it deals dircctly with the inter-
nal structure of the CPU. To program in Assembly language, the programmer must
know all the registers of the CPU and the size of each, as well as other details.

Today, one can use many different programming languages, such as
BASIC, Pascal, C, C++, Java, and numerous others. These languages are called
high-level languages because the programmer does not have to be concerned with
the internal details of the CPU. Whereas an assembler is used to translate an
Assembly language program into machine code (sometimes also called object
code or opcode for operation code), high-level languages are translated into
machine code by a program called a compiler. For instance, to write a program in
C, one must use a C compiler to translate the program into machine language. Now
we look at 8051 Assembly language format and use an 8051 assembler to create a
ready-to-run program.

Structure of Assembly language

An Assembly language program consists of, among other things, a series
of lines of Assembly language instructions. An Assembly language instruction
consists of a mnemonic, optionally followed by one or two cperands. The
operands are the data items being manipulated, and the mnemonics are the com-
mands to the CPU, telling it what to do with those items.

ORG 0OH ;start (origin) at location 0
MOV R5, #25H ;load 25H intc RS
MOV R7, #34H ;load 34H into R7

MOV A, #0 ;load 0 into A

ADD A,R5 ;add contents of R5 to A
;now A = A + RO

ADD A,R7 ;add contents of R7 tc A
;now A = A + R7

ADD A, #12H ;add to A value 12H
;now A = A + 12H

HERE : SJMP HERE ;stay in this loop
END ;end of asm source file

Program 2-1: Sample of an Assembly Language Program

A given Assembly language program (see Program 2-1) is a series of state-
ments, or lines, whi-h are either Assembly language instructions suc' as ADD and
MOV, or statements called directives. While instructions tell the CPU what to do,
directives (also called pseudo-instructions) give directions to the assembler. For
example, in the above program while the MOV and ADD instructions are com-
mands to the CPU, ORG and END are directives to the assembler. ORG tells the

40

assembler to place the opcode at memory location 0 while END indicates to the
assembler the end of the source code. In other words, one is for the start of the pro-
gram and the other one for the end of the program.

An Assembly language instruction consists of four fields:
- S .
(label:] . mnemonic [operands] [; comment] }

Brackets indicate that a field is optional and not all lines have them.
Brackets should not be typed in. Regarding the above format, the following points
should be noted. ' .

1. The label field allows the program to refer to a line of code by name. The label
field cannot exceed a certain number of characters. Check your assembler for
the rule.

7. The Assembly language mnemonic (instruction) and operand(s) fields togeth-
er perform the real work of the program and accomplish the tasks for which
the program was written. In Assembly language statements such as

ADD A,B
MOV A, #67

ADD and MOV are the mnemonics which producé opcodcs; “A,B” and
“A#67” are the operands. Instead of a mnemonic and operand, these two fields
~ould contain assembler pscudo-instructions, of directives. Remember that
directives do not generate any machine code {opcode) and are used only by the
assembler, as opposed to instructions that are translated into machine code
(opcode) for the CPU to execute. In Program 2-1 the commands ORG (origin)
and END are examples of directives (some 8051 assemblers use .ORG and
JEND). Check your assembler for the rules. More of these pseudo-instructions
are discussed in detail in Section 2.5.

3. The comment field begins with a semicolon comment indicator .
Comments may be at the end of a line or on a line by themselves. The asseni-
bler ignores comments, but they are indispensable to programmers. Although
comments are optional, it is recommended that they be used to describe the
program’in order to make it easier for someone else to read and understand.

4. Notice the label “HERE” in the label field in Program 2-1. Any label referring
to an instruction must be followed by a colon symbol, “:”. In the SIMP (short
jump instruction), the 8051 is told to stay in this loop indefinitely. If your sys-
tem has a monitor program you do not need this iine and it should b deleted
from your program. i the next section we will see how 0 create a « ~ady-to-
run program.

CHAPTER 2: 8051 ASSEViDLY LAN Gv A 7. PROGRAMMING 41

Review Questions

—

What is the purpose of pseudo-instructions?

2. are translated by the assembler into machine code, whereas
are not. -
3. True or false. Assembly language is a high-level language.

4. Which of the following produces opcode?

(a) ADD A,R2 (b) MOV A#12 (c) ORG 2000H (d) SIMP HERE

Pseudo-instructions are also called _ .

6. True or false. Assembler directives are not used by the CPU itself. They are
simply a guide to the assembler.)

In question 4, which one is an assembler directive?

w

~

SECTION 2.3: ASSEMBLING AND RUNNING AN 8051
PROGRAM

Now that the basic form of an Assembly language program has been given,
the next question is: How it is created, assembled and made ready to run? The
steps to create an executable Assembly language program are outlined as follows.

EDITOR
1. First we use an editor to type in a PROGRAM
program similar to Program 2-1. l
Many excellent editers or word myfile.asm
processors are available that can be v
used to create and/or edit the pro- ASSEMBLER
gram. A widely used editor is the PROGRAM

MS-DOS EDIT program (or ‘_l
Notepad in Windows), which comes myfile.Ist
with all Microsoft operating systems.

Notice that the editor must be able to myfile.obj VI other obj files
produce an ASCII file. For many LINKI‘3R
assemblers, the file names follow the PROGRAM

usual DOS conventions, but the

source file has the extension “asm” ¢

or “sr¢”, depending on which assem- myfile.abs

bler you are using. Check your -
assembler for the convention. The . L

“asm” extension for the source file is } OH

used by an assembler in the next ~ | PROGRAM

siep.

myfile.hex

o

The “asm” souice file containing the
program code created in step 1 is fed
to an 8051 assembler. The assembler Figure 2-2. Steps to Create a Progran
converts the instructions into

42

machine code. The assembler wil! produce an object file «nd a list file. The
extension for the object file is “obj” while the extension for the list file is “Ist™.

3. Assemblers require a third step called linking. The iink program takes onc or
more object files and produces an absolute object file with the extension “abs”.
This abs filc is used by 8051 trainers that have a monitor program.

4. Next the “abs” file is fed into a program called “OH” (object to hex conveit-
er) which creates a file with extension “hex” that is ready to burn into ROM.
This program comes with all 8051 assemblers. Recent Windows-based assem-
blers combine steps 2 ithrough 4 into one step.

More about “asm” and “obj” files

The “asm” file is also called the source file and for this reason some assem-
blers require that this file have the “src” extension. Check your 8051 assembler to
see which one it requires. As mentioned earlier, this file is created with an editor
such as DOS EDIT or Window’s Notepad. The 8051 assembler converts the asm
file’s Assembly language instructions into machine language and provides the obj

(object) file. In addition to creating the object file, the assembler also produces the
Ist file (list file).

Ist file

The Ist (list) file, which is optional, is very useful to the programmer
because it lists all the opcodes and addresses as well as.errors that the assembler
detected. Many assemblers assume that the list file is not wanted unless you indi-
cate that you want to produce it. This file can be accessed by an editor such as
DOS EDIT and displayed on the monitor or sent to the printer to get a hard copy.
The programmer uses the list file to find syntax errors. It is only aiter fixing all the
errors indicated in the Ist file that the obj file is ready to be input to the linker pro-
gram.

0000
0000
0002
0004
0006

Y W N

6 0007

~J

0Cco08

oooa
000C

ORG CH ;start (origin) at O
7D25 MOV RS, #25H ;load 25H into RS
TF34 MOV R7, #34d ;load 54H into R7
7400 MOV 2., #0 ;load 0 into A
2D ADD A.RS5 ;add contents of RH to A
' ;now A = A + RS '
2F ADD A, R7 ;add contents of R7 to A
;now A = A + R7
2412 ADD A, #12H ;add to-A value 12H
;now A = A + 12H
80FE HERE: SJMP HERE ;stay in this loop
END ;end of asm source file

Program 2-1: List File

CHAPTER 2: 8051 ASSEMBLY LANGUAGE PROGRAMMING

43

Review Questions

1. True or false. The DOS program EDIT produces an ASCIHI file.

2. True or false. Generally, the extension of the source file is “.an” or “.src”.

3. Which of the following files can be ptoduced by the DOS EDIT prograim?
(a) myprog.asm (b) myprog.obj (c) myprog.cxe (d) myprog.lst

4 Which of the following files is produced by an 8051 assembler?

(a) myprog.asm (b) myprog.obi (c) myprog.hex (d) myprog.lst

Which of the following files lists syntax errors?

(a) myprog.asm (b) myprog.obj (¢) myprog.hex (d) myprog,.lst

U

SECTION 2.4: THE PROGRAM COUNTER AND ROM
SPACE IN THE 8051

In this section we examine the role of the program counter (PC) register in

‘executing an 8051 program. We also discuss ROM memory space for various 8051
family members.

Program counter in the 8051

Another important register in the 8051 is the PC (program counter). The
program counter points to the address of the next instruction to be executed. As the
CPU fetches the opcode from the program ROM, the program counter is incre-
mented to point to the next instruction. The program counter in the 8051 is 16 bits
wide. This means that the 8051 can access program addresses 0000 to FFFFH, a
total of 64K bytes of code. However, not all members of the 8051 have the entire
64K bytes of on-chip ROM installed, as we will see soon. Where does the 8051
wake up when it is powered? We wiil discuss this important topic next.

Where the 8051 wakes up when it is powered up

One question that we must ask about any microcontroller (or microproces-
sor) is: At what address does the CPU wake up upcn applying power to it? Each
MiCroprocessor 1s different. 1n the casc of the 8051 family, that is, all members
regardless of the maker and variation, the microcontroller wakes up at memory
address 0000 when it is powered up. By powering up we mean applying Vcc to

the RESET pin as discussed in Chapter 4. In other words, when the 8051 is pow-
ered up, the PC (program counter) has the value of 0000 in it. This means that it
expects the first opcode to be stored at ROM address 0000H. For this reason in the
8051 system, the first opcode must be burned into memory location 0000H 6f pro-
gram ROM since this is where it looks for the first instruction when it is booted.
We achieve this by the ORG statement in the source program as shown earlier.
Next we discuss the step-by-step action of the program counter in fetching and
executing a sample program.

Placing code in prograi ROM

To get a better understanding of the role of the program counter in fetch-
ing and executing a program, W examine the action of the program counter as
each instruction is fetched and executed. First, we examine once more the list file

44

of the sample program and how the code is placed in thc ROM of an 8051 chip.
As we can see, the opcode and operand for cach instruction arc listed on the left
side of the list file.

- 0008 ORG OH ;start at location O
a2 7225 MOV R5, #25H ;load 25H into RS
L aitn T34 MOV R7, #34H :load 34H into R7
L2214 7400 MOV A, #0 ;load 0 into A
Nz ‘ADD A,RD :add contents of R5 to A
:now A = A + RS
oTozz ADD A.R7 ;add contents of R7 to A
;now A = A + R7 ’
oTEo2412 ADD A, #12H4 ;add to A value 12ZH
_ s ;now A = A + 1ZH
~)2L XCFE HERE: SJMP HERE ;stay 1n this loop
R END ;end of asm source file

program 2-1: List File

ROM Address Machine Language Assembly Language

0000 7D25 MOV R5, #25H
0002 TF34 MOV R7, #34H
0004 7400 MOV _A, #0

‘0006 2D ADD A,R5

0007 2F ADD A,R7

0008 2412 ADD A, #12H

000A 80FE HERE: SJMP HERE

After the program is burned into ROM of an 8051 family member such as
8751 or AT895! or DS5000, the opcode and operand are placed in ROM memory
locations starting at 0000 as shown in the list below.

The list shows that address 0000 con-
wains 7D which is the opcode for moving o Erogram 2-1: ROM Contents

value into register RS, and address 0001 con- A ddress

Code
taiiis the operand (in this case 25H) to be 0000 7D
moved to R5. Therefore, the instruction “MOV 01 25
R5, #25H” has a machine code of “7D25”, 092 - 7F
where 7D is the opcode and 25 is the operand. 903 - 34
Similarly, the machine code “7F34” is located 004 74
in memory locations 0002 and 0003 and rep- (005 00
resents the opcode and the operand for the _“ppo6 2D
instruction “MOV R7, #34H”. In the same (g7 2F
way, machine code “7400” is located in mem- 008 24
ory locations 0004 and 0005 and represcis 009 12
the opcode and the operand for the instruction (gQA - 80
“MOV A, $0”. The memory location 0006 has oo0B FE

the opcode of 2D which is the opcode for the

CHAPTER 2: 8051 ASSEMBLY LANGUAGE PROGRAMMING - 45

instruction “ADD A, R5” and memory location 0007 has thc content 2F, which is
opuwode for the “ADD A, R7” instruction. The opcode for instruction “ADD
A, #12H” is located at address 0008 and the operand 12H at address 0009. The
- memory location 000A has the opcode for the SIMP instruction and its target
address is located in location 000B. The reason the target address is FE is
explained in the next chapter.

-

Executing a program byte by byte

Assuming that the above program is burned into the ROM of an 8051 chip
(or 8751, AT8951, or DS5000), the following is a step-by-step description of the
action of the 8051 upon applying power to it.

1. When the 8051 is powered up, the PC (program counter) has 0000 and starts
to fetch the first opcode from location 0000 of the program ROM. In the case
of the above program the first opcode is 7D, which is the code for moving an
operand to R5. Upon executing the opcode, the CPU fetches the value 25 and
places it in R5. Now one instruction is {inished. Then the program counter is
incremented to point to 0002 (PC = 0002), which contains opcode 7F, the
opcode for the instruction “MOV R7, .. ”.

2. Upon executing the opcode 7F, the value 34H is moved into R7. Then the pro-
gram counter is incremented to 0004.

3. ROM location 0004 has the opcode for instruction “MOV A, #0”. This
instruction is executed and now PC=0006. Notice that all the above instruc-
tions are 2-byte instructions; that is, each one takes two memory locations.

4. Now PC = 0006 points fo the next instruction which is “ADD A, R5”. This is
a 1-byte instruction. After the execution of thig instruction, PC = 0007.

5. The location 0007 has the opcode 2F which belongs to the instructton “ADD
A, R7”. This is also a 1-byte instruction. Upon execution of this instruction,
PC is incremented to 0008. This process goes on until all the instructions are
fetched and executed. The fact the program counter points at the next instruc-
tion to be executed explains why some microprocessors (notably the x86) call
the program counter the insfruction pointer.

ROM memory map in the 8051 family

As we saw in the last chapter, some family members have only 4K bytes!
of on-chip ROM (e.g., 8751, AT8951) and some, such as the AT89C52, have 8K1
bytes of ROM. Dallas Semiconductor’s DS5000-32 has 32K bytes of on-chip
ROM. Dallas Semiconductor also has an 8051 with 64K bytes of on-chip ROM.
The point to remember is that no member of the 8051 family can access more than
64K bytes of opcode since the program counter in the 8051 is a 16-bit register
(0000 to FFFF address range). [t must be noted that while the first location of pro-
gram ROM inside the 8051 has the address of 0000, the last location can be dif-
ferent depending on the size of the ROM on the chip. Among the 8051 family
members, the 8751 and AT8951 have 4K bytes of on-chip ROM. This 4K bytes
ROM memory has memory addresses of 0000 to OFFFH. Therefore, the first loca
tion of on-chip ROM of this 8051 has an address of 0000 and the last location ha
the address of OFFFH. Look at Example 2-1 to see how this is computed.

46

Fxampie 2-1

Find the ROM memory address ¢ each of the following 8051 chips.
(a) AT89CS1 (or 8751) with 4KB (b) DS5000-32 with 32KB

Solution:

(a) With 4K hytes of on-chip ROM memory space, we have 4096 bytes, which is 1000H
in hex (4 x 1024 = 4096 or 1000 ir: hex). This much memory maps to address loca-
tions of 0000 to OFFFH. Notice that 0 is always the first location.

(b) With 32K bytes we have 32,768 (32 x 1024 = 32,768) bytes. Converting 32,768 to
hex, we get 8000H; therefore, the memory space is 0000 to 7FFFH.

byte byte oyte
e B — >

0000 0000 0000
OFFF

8751]

ATS9CS1 IFFF
8752
AT89C52
TFFF

DS5000-32

Figure 2-3. 8051 On-Chip ROM Address Range
Review Questions

I. In the 8051, the progiam counter is ____ bits wide.

2. True or false. Every member of the 8051 family, regardless of the maker,
wakes up at memory 0000H when it is powered up.

3. At what ROM location do we stoie the first opcode of an 8051 program?

The instruction “MOV A, #44H” isa ____-byte instruction.

5. What is the ROM address space for the 8052 chip?

e

SECTION 2.5: 8051 DATA TYPES AND DIRECTIVES

-

In this section we look at some widely used data types and directives sup-
ported by the 8051 assemblier.

8051 data type and directives

The 8051 microcontroller has only one data type. It is 8 bits, and the size
of each register is also 8 bits. It is the job of the programmer to break down data

CHAPTER 2: 8051 ASSEMBLY LANGUAGE PROGRAMMING 47

larger than 8 bits (00 to FFH, or 0 to 255 in decimal) to be processed by the CPU.
For examples of how to process data larger than 8 bits, see Chapter 6. The data
types used by the 8051 can be positive or negative. A discussion of signed num-
bers is given in Chapter 6.

DB (define byte)

The DB directive is the most widely used data directive in the assembler.
[t is used to define the 8-bit data. When DB is used to define data, the numbers can
be in decimal, binary, hex, or ASCII formats. For decimal, the “D” after the deci-
mal number is optional, but using “B” (binary) and “H” (hexadecimal) for the oth-
ers is required. Regardless of which is used, the assembler will convert the num-
bers into hex. To indicate ASCII, simply place it in quotation marks (‘like this’).
The assembler will assign the ASCII code for the numbers or characters automat-
ically. The DB directive is the only directive that can be used to define ASCII
strings larger than two characters; therefore, it should be used for all ASCII data
* definitions. Following are some DB examples:

ORG 500H
DATAL: DB 28 ;DECIMAL(1C in hex)
DATAZ2 : DB 00110101B ;BINARY (35 in hex)
DATA3: DB - 39H ; HEX

ORG 510H
DATA4 : DB “2591” ;ASCII NUMBERS

ORG 518H
DATAG: DB "My name is Joe”;ASCII CHARACTERS

Either single or double quotes can be used around ASCII strings. This can
be useful for strings, which contain a single quote such as “Q’ Leary”. DB is also
used to allocatc memory in byte-sized chunks.

Assembler directives

The following are some more widely used directives of the 8051.

ORG (origin)

The ORG directive is used to indicate the beginning of the address. The
number that comes after ORG can be either in hex or in decimal. If the number is
not followed by H, it is decimal and the assembler will convert it to hex. Some
assemblers use “. ORG” (notice the dot) instead of “ORG” for the ongm directive. -
Check your assembler.

EQU (equate)

This is used to define a constant without occupying a memory location.
The ")U directive does not set aside storage for a deta item but associates a con-
stant value with a data label so that when the label appears in the program, its con-
stant value will be substituted for the label. The following uses EQU for the count-
er constant and then the constant is used to load the R3 register.

48

COUNT EQU 25 -
MOV R3, #COUNT
When executing the instruction “MOV R3, #COUNT”, the register R3 will
be loaded with the value 25 (notice the # sign). What is the advantage of using
~EQU? Assume that there is a constant (a fixed value) used in many differcnt places
in thc program, and the programmer wants to change its value throughout. By the

use of EQU, one can change it once and the assembler wili change all of tis occur-
rences, rather than search the entire program trying to find every occurrence.

END directive

Another important pseudocode is the END directive. This indicates to the
assembler the end of the source (asm) file. The END directive is the last line of an
8051 program, meaning that in the source code anything after the END directive

is ignored by the assembler. Some assemblers use . END” (notice the dot) instead
of “END”. :

Rules for labels in Assembly language

By choosing label names that are meaningful, a programmer can make a
program much easier to read and maintain. There are several rules that names must
follow. First, each label name must be unique. The names used for labels in
Assembly language programming consist of alphabetic letters in both upper and
lower case, the digits 0 through 9, and the special characters question mark (?),
period (), at (@), underline (), and dollar sign ($). The first character of the label
must be an alphabetic character. In other words it cannot be a number. Every
assembler has some reserved words which must not be used as labels in the pro-
gram. Foremost among the reserved words are the mnemonics for the instructions.
For exampie, “MOV” and “ADD” are reserved since they are instruction mnemon-
ics. Aside from the mnemonics there are some other reserved words. Check your
assembler for the list of reserved words.

Review Questions

1. The j directive is always used for ASCII strings.
2. How many bytes are used by the following?
DATA 1 DB "AMERICA"
3. What is the advantage in using the EQU directive to define a constant value?
4. How many bytes are set aside by each of the following directives?
(a) ASC_DATA DB “1234” (b) MY_DATA DB "ABC1234"

5. State the - ntents of memory locations 2GCH - 205H for " - following
ORG 200H
MYDATA: DB "ABC123"

CHAPTER 2: 8051 ASSEMBLY LANGUAGE PROGRAMMING 49

SECTION 2.6: 8051 FLAG BITS AND THE PSW REGISTER

Like any other microprocessor, thc 8051 has a flag register to indicate
arithmetic conditions such as the carry bit. The flag register in the 8051 is called
the program status word (PSW) register. In this section we discuss various bits of
this register and provide some examples of how it is altered.

PSW (program status word) register

The program status word (PSW) register is an 8-bit register. It is also
referred to as the flag register. Although the PSW register is 8 bits wide, only 6
bits of it are used by the 8051. The two unused bits are user-definable flags. Four
of the flags are calied conditional flags, meaning that they ndicate some condi-
tions that resulted after an instruction was executed. These four are CY (carry), AC
(auxiliary carry), P (parity), and OV (overflow).

As seen from Figure 2-4, the bits PSW3 and PS W4 are designated as RSO
and RS1, and are used to change the bank registers. They are explained in the next
section. The PSW.5 and PSW.1 bits are general-purpose status flag bits and can be
used by the programmer for any purpose. In other words, they are user definable.
See Figure 2-4 for the bits of the PSW register.

CY AC FO RS1 RSO ov -- P
CY PSW.7 Carry flag.
AC PSW6 Auxiliary carry flag.
-~ PSW.5 Available to the user for general purpose.
RSt PSW4 Register Bank selector bit 1.
RSO PSW.3 Register Bank selector bit 0.
ov PSW.2 Cverflow flag.
-- PSW.1 User definable bit.
P PSW.0 Parity flag. Set/cleaicd by hardware each instuction cycie

to indicate an odd/even nurnber of 1 bits in the accumulator.

RS1 RSO Register Bank Address

0 0 0 00H - 07H

0 1 | 08H - OFH

! 0 2 10H - 17H -
l 1 3 18H - 1FH

Figure 2-4. Bits of the PSW Register

The following is a brief explanation of four of the flag bits of the PSW reg-
ister. The impact of instructions on these registers is then discussed.

=~
JyU

CY, the carry flag

This flag is set whenever there is a carry out from the d7 bit. This fag bit

is affccted after an 8-bit addition or subtraction. It ca
ly by an instruction such as “SETB C” and “CLR C” where
“set bit carry” and “CLR C” for “clear carry

addressable instructions will be given in Chapter 8.

AC, the auxiliary carry flag

If there is a carry from D3 to D4 during
is set; otherwise, it is cleared. This flag is used by instructio

(binary coded decimal) arithmetic. See Chapter 6 for more information.

P, the parity flag

The parity flag reflects the number of 1s in the A (accut
only. If the A register contains an odd nu

if A has an even number of 1s.

OV, the overflow flag

This flag is set whenever the r
large, causing the high-order bit to ove
flag is used to detect errors in unsigne
is only used to detect errors in signed arithmetic operations

detail in Chapter 6.

ADD instruction and PSW

Nexti we examine the impact
of the ADD instruction on the flag bits
CY, AC, and P of the PSW register.
Some examples should clarify their
status. Although the flag bits affected
by the ADD instruction are CY (carry
flag), P. (parity flag), AC (auxiliary
carry flag), and OV (overfiow flag)
we will focus on flags CY, AC, and P
for now. A discussion of the overflow
flag is given in Chapter 6, since it
relates only ‘to signed number arith-
metic. How the various flag bits are
used in programming is discussed in
future chapters in the context of many
applications.

See Examples 2-2 through 2-4
for the impact on sclccted flag bits as
a result of the ADD instruction.

Table 2-1: Instructiens That Affect

Ylag Bits

mber of 1s, then P = L.

n also be setto 1 or 0 direct-
“gETB C” stands for
» More about these and other bit-

an ADD or SUB operation, this bit
ns that perform BCD

nulator) register
Therefore, P =0

esult of a signed number operaiion is t0o
flow into the sign bit. In general, the carry
d arithmetic operations. The overflow flag
and is discussed in

Instruction

AC

ADD

X

ADDC

X

SUBB

X

MUL

DIV

DA

RRC

RLC

SETB C

CLR C

CPL C

ANL C,bit

ANL G;/bit

ORL C,bit

ORL C,/bit

MOV C,bit

CINE

Note: X canbe 0 or 1.

CHAPTER 2: 8051 ASSEMBLY LANGUAGE PROCR AMMING

51

IExample 2-2

Show the status of the CY, AC, and P flags after the addition of 38H and 2FH in the fol-
lowing instructions.

MOV A, #38H

ADD A, #2FH ;after the addition A=g7H, CY=0

Solution:
38 00111000
+2F 00101111
67 01100111

CY = 0 since there is no carry beyond the D7 bit
AC = 1 since there is a carry from the D3 to the D4 bit
P =1 since the accumulator has an odd number of Is (it has five Is).

Example 2-3

Show the statys of the CY, AC, and P tlags after the addition of 9CH and 64H in the fol-
lowing instructions.
MOV A, #9CH

ADD A, #64H ;after addition A=00 and CyY=1
Soluticn:
oC - 10011100
+_64 01190100
100 00060000

CY=1 since there is a carry beyond the D7 bit
AC=1 since there is a carry from the D3 to the D4 bit
P=0 since the accumulator has an even number of 1s (it has zero 1s).

Example ‘2-4

LY

Show the status of the CY, AC, and P flags after the addition of 88H and 93H in the fol-
lowing instructions.
MOV A, #88H

ADD A, #93H ;after the addition A=1BH, CY=1

Solution:
88 10001000
+ 93 10010011
11B 00011011

CY=1 since therc is a carry beyond the D7 bit.
AC=0 since there is no carry from the D3 to the D4 bit.
P=0 since the accumulator has an even number of 1s (it has four 1Is).

Y

Review Questions

The flag register in the 8051 is callea .
What is the size of the flag register in the 80517
Which bits of the PSW register are user-definable?
Find the CY and AC flag bits for the following code.
MOV A, #0FFIl-
ADD A, #01
5 Find the CY and AC flag bits for the following code.
MOV A, #0C2H
ADD A, #30H

Pl

SECTION 2.7: 8051 REGISTER BANKS AND STACK

The.8051 microcontroller has a total of 128 bytes of RAM. In this section
we discuss the allocation of these 128 bytes of RAM and examine their usage as
registers and stack.

RAM memory space allocation in the 8051

There are 128 bytes of RAM in the 8051 (Some members, notably the
8052, have 256 bytes of RAM). The 128 bytes of RAM inside the 8051 are
assigned addresses 00 to 7FH. As we will see in Chapter 5, they can be accessed , .. .7
directly as memory locations. These 128 bytes are divided into three different { f(T

groups as follows. , A
1. A total of 32 bytes from locations T8 :
00 to 1F hex are set aside for reg- _ Scratch pad RAM - ’ '
ister banks and the stack.
2. A total of 16 bytes from locations | 30
20H to 2FH are set aside for bit- | 2F
addressable read/write memory. A Bit-Addresstble RAM
detailed discussion of bit-address- | 5 h
able memory and instructions is | TF <
given in Chapter 8. Register Bank 3
3. A total of 80 bytes from locations | 1 % j
30H to 7FH are used for read and | 17 Register Bank 2 DI
write storage, or what is normally (1)12 |
called a scratch pad. These 80 Register Bank | (stack)
locations of RAM are widely used | 08 V R 4
for the purpose of storing data and /07 o
parameters by 8051 programmers. |-~ Register Bank 0 /| . -
We will use them in future chap- | 4 g ‘ ,
ters to store data brought into the J
CPU via /O ports. Figure 2-5. RAM Allocation in the 8051

Register banks in the 8051

As mentioned earlier, a total of 32 bytes of RAM are set aside for the reg-
ister banks and stack. These 32 bytes are divided into 4 banks of registers in which

CHAPTER 2: 8051 ASSEMBLY LANCUAGY PROGR AMMING 53

oach bank has 8 registers, RO - R7. RAM lncations from O to 7 are set aside for
bank 0 of RO - R7 where R0 is RAM location 0, R1 is RAM location 1, R2 is loca-
tion 2. and so on, until memory location 7 which belongs to R7 of bank 0. The sec-
ond bank of registers RO - R7 starts at RAM location 08 and goes to location OFH.
The third bank of RO - R7 starts at memory location 10H and goes to location 17H;
finally, RAM locations 18H to 1FH are set aside for the fourth bank of RO - R7.
The following shows how the 32 bytes are allocated into 4 banks:

Bank 0 Bank 1 Bank 2) Bank 3
7[R F[T R7 17 R7 IF[_R7
6[R6 E[R6 16 R6] IE[_R6]
s[_RS D[RS 15 RS] iD[_ RS
4 R4 c[rR& | 14 R4 ic[rRa_]
3 R3] B[&3 | i3 3 | iB[R3 |
2 R2 A[R2 12[R2 A R2
(R o[RI | n[_RL_] 19 R[]
o RO s RO o[RO] 18] RO

Figure 2-6. 8051 Register Banks and their RAM Addresses

As we can see from Figure 2-5, bank 1 uses the same RAM space as the
stack. This is a major problem in programming the 8051. We must either not use
register bank 1, or we must allocate another area of RAM for the stack. This wiil
be discussed below. - '

Example 2-5

State the contents of RAM locations after the following program:

MOV RO, #99H ;load RO with value 99H
MOV R1, #85H ;load R1 with value B85H
MOV R2, #3FH ;load R2 with value 3FH
MOV R7, #63H ;load R7 with value 63H
MOV RS, #12H ;load R5 with value 12H

Solution:

After the execution of the above program we have the following:
RAM location 0 has value 99H RAM location 1 has value 85H
RAM location 2 has value 3FH RAM location 7 has value 63H
RAM location 5 has value 12H ’

Default register bank

~

If RAM locations 00 - 1F are set aside for the four register banks, which
register bank of RO - R7 d~ we have access to when the 8051 is powered up? The
answer is register bank 0; that is, RAM locations 0, 1, 2, 3, 4, 5, 6, and 7 are
accessed with the names RO, R1, R2, R3, R4, RS, R6, and R7 wheu programming
the 8051. It is much easier to refer to these RAM locations with names such as RO,
R1. and s0 on, than by their memory locations. Example 2-6 clarifies this concept.

54

[Example 2-6

Repeat Example 2-5 using RAM addresses instead of register names.

Solution:

This is called direct addressing mode and uses the RAM address locaticn for the desti-
nation address. See Chapter 5 for a more detailed discussion of addressing modes.

MOV 00, #99H ;load RO with value 99H
MOV 01, #85H ;load R1 with value 85H
MOV 02, #3FH ;load RZ2 with value 3FH
MOV 07, #63H ;load R7 with value 63H
MOV 05, #12H ;load R5 with value 124

How {o switch register banks

As stated above, register bank 0 is the default when the 8051 is powered
up. We can swiich to other banks by use of the PSW (program status word) regis-
ter. Bits D4 and D3 of the PSW are used to select the desired icgister bank as

Table 2.2: PSW Bits Bank Selection shown in Table 2-2.

RS1 (PSW.4) RSO (PSW.3) The D3 and D4 bits of register
Bank 0 0 0 PSW are often referred to as PSW.4
Bank 1 0 1 and PSW.3 since they can be accessed
Bank 2 I 0 - by the bit-addressable instructions
Bank 3 1 ! SETB and CLR. For example, “SETB

PSW.3” will make PSW.3=1 and select
bank register 1. Sec Example 2-7.

Example 2-7

State the contents of the RAM locations after the following program:

SETB PSW.4 ;select bank 2

MOV RO, #99H :load RO with wvalue 99H
MOV R1, #85H ;load R1 with value 85H
MOV R2, #3FH ;1oad RZ with wvealue 3FH
MOV R7, #63H ;load R7 with value 63H
MOV RS, #12H ;load RS with value 12H

Solution:

By default, PSW.3=0 and PSW.4=0; therefore, the instruction “SETB PSW.4” sets
RS1=1 and RS0=0, thereby selecting register bank 2. Register bank 2 uses RAM loca-
tions 10H - 17H. After the execution of the above program we have the following:
RAM location 10H has vaiue 99H RAM location 11H has value 85H

RAM location 12H has value 3FH RAM location 17H has value 63H
| RAM location 15H has value 12H

LA AAEES e ah b o ~r -

CLATTER Z: 6051 ASSEMBLY LANGUAGE PROGRAMMING 55

Stack in the 8051

The stack is a section of RAM used by the CPU to store information teni-’
porarily. This information could be data or an address. The CPU needs this stor-
age area since there are only a limited number of registers.

How stacks are accessed in the 8051

If the stack is a section of RAM, there must be registers inside the CPU to
point to it. The register used to access the stack is called the SP (stack pointer) reg-
ister. The stack pointer in the 8051 is only 8 bits wide, which means that it can take
values of 00 to FFH. When the 8051 is powered up, the SP register contains value
07. This means that RAM location 08 is the first location being used for the stack
by the 8051. The storing of a CPU register in the stack is called a PUSH, and load-
ing the contents of the stack back into a CPU register is called a POP. In other
words, a register is pushed onto the stack to save it and popped off the stack to
retrieve it. The job of the SP is very critical when push and pop actions are per-
formed. To see how the stack works, let’s look at the PUSH and POP instructions.

Pushing onto the stack

In the 8051 the stack pointer (SP) is pointing to the last used location of the
stack. As we push data onto the stack, the stack pointer (SP) is incremented by one.
Notice that this is different from many microprocessors, notably x86 processors in
which the SP is decremented when data is pushed onto the stack. Examining
Example 2-8, we sec that as each PUSH is executed, the contents of the register
are saved on the stack and SP is incremented by 1. Notice that for every byte of
data saved on the stack, SP is incremented only once. Notice also that tc push the
registers onto the stack we must use their RAM addresses. For example, the
instruction “PUSH 1" pushes register R1 onto the stack.

Example 2-8

Show the stack and stack pointer for the following. Assume the default stack are
MOV R6, #25H
MOV R1, #12H
MOV R4, #0F3H

PUSH 6
PUSH 1
PUSH 4-
. After PUSH 6 After PUSH 1 After PUSH 4 -
Solution: : I
0B 0B 0B 0B
0A 0A _ 0A .~ 0A F3
09 09 09 12 09 12
08 08 25 08 25 08 25
Start SP =07 SP=08 . SP =09 SP = 0A

56

Popping from the stack

Popping the contents of the stack back into a given register is the opposite
process of pushing. With every pep, the top byte of the stack is copied to the reg-
ister specified by the instruction and the stack pointer is decremented once.
Example 2-9 demonstrates the POP instruction.

The upper limit of the stack

As mentioned earlier, in the 8051 RAM locations 08 to 1F can be used for
the stack. This is due to the fact that locations, 20 - 2FH of RAM are reserved for
bit-addressable memory and must not be used by the stack. If in a given program
we need more than 24 bytes (08 to 1FH = 24 bytes) of stack, we can change the
SP to point to RAM locations 30 - 7FH. This is done with the instruction “MOV

SP, #xx".
Example 2-9
Examining the stack, show the contents of the registers and SP after execution of the
following instructions. All values are in hex.
POP 3 ; POP stack into R3
POP 5 ; POP stack into RS
POP 2 ; POP stack into R2
Solutisn:
‘AflerPOP3. AferPOPS After POP 2
0B s4 OB . 0B 0B
0A F9 0A F9 0A 0A
08 76 09 76 09 76 09
08 6c 08 6C . 08 6C 08 6C
Start SP = 0B SP = 0A SP =09 SP = 08

CALL instruction and the stack

In addition to using the stack to save registers, the CPU also uses the stack
to save the address of the instruction just below the CALL instruction. This is how
{1» CPU knows where to resume when it returns .iom the called subroutine. More
- lurinaiion on this wiii be given in Chapter 3 when we discuss the CALL instruc-
tion.

CHAPTER 2: 8051 ASSEMBLY LANGUAGE PROGRAMMING 57

Example 2-10
Show the stack and stack pointer for the tollowing instructions.
MOV SP, #5Fd ;make RAM location 60H
;first stack location
MOV R2, #25H -
MOV R1,#12H
MOV R4, #0F3H
PUSH 2
PUSH 1
PUSH 4
Solution:
After PUSH2 - After PUSH1 After PUSH 4
“62 62 F3
61 12
60 25
SP =62

Stack and bank 1 bonflict

Recall from our earlier discussion that the stack pointer register points to
the current RAM location available for the stack. As data is pushed onto the stack,
SP is incremented. Conversely, it is decremented as data is popped off the stack
into the registers. The reason that the SP is incremented after the push is to make
sure that the stack is growing toward RAM locaticn 7FH, from lower addresses to
upper addresses. If the stack pointer were decremented after push instructions, we
would be using RAM locations 7, 6, 5, etc. which belong to R7 to RO of bank 0,
the default register bank. This incrementing of the stack pointer for push instruc-
tions also ensures that the stack will not reach location 0 at the bottom of RAM,
and consequently-run out of space for the stack. However, there is a problem with
the default setting of the stack. Since SP = 07 when the 8051 is powered up, the
first location of the stack is RAM location 08 which also belongs to register RO of
register bank 1. In other words, register bank 1 and the stack are using the same
memory space. If in a given program we need to use register banks 1 and 2, we
can reallocate another section of RAM to the stack. For example, we can allocate
R+ M locations 60H and higher to the stack as showwn in Example 2-10.

S8

Review Questions

1. What is the size of the SP register?
2. With cach PUSH instruction, the stack pointer register, SP, S
(incremented, decremented) by 1.

3. With each POP instruction, the SP is "~ (incremented, decremented)
by 1.

4. On power-up, the 8051 uses RAM location as the {irst location of the
stack.

5. On power up, the 8051 uses bank ___ for registers RO - R7.

6. On pbwer up, the 8051 uses RAM locations to for registers RO -

R7 (register bank 0).
7. Which register bank is used if we alter RS0 and RS1 of the PSW by the fol-
fowing two instructions?
SETB PSW.3
SETB PSW.4

8. In Question 7, what RAM locations are used for register RO - R7?

SUMMARY

This chapter began with an exploration of the major registers of the 8051,
including A, B, RO, R1, R2, R3, R4, R5, R6, R7, DPTR, and PC. The use of these
registers was demonstrated in the context of programming examples. The process
of creating an Assembly language program was described from writing the source
file, to assen:bling it, linking, and executing the program. The PC (program count-
er) register always points to the next instruction to be executed. The way the 8051
uses program ROM space was explored because 8051 Assembly language pro-
grammers must be aware of where programs are placed in ROM, and how much
memory is available.

An Assembly language program is composed of a series of statements that
are either insiructions or pseudo-instructions, also called directives. Instructions
are translated by the assembler into machine code. Pseudo-instructions are not
translated into machine code: They direct the assembler in how to translate instruc-
tions into machine code. Some pseudo-instructions, called data directives, are used
to define data. Data is allocated in byte-size increments. The data can be in bina-
ry, hex, decimal, or ASCII formats.

Flags are useful to programmers since they indicate certain-conditions,
such as carry or overflow, that result from execution of instructions. The stack is
used to store data temporarily during execution of a program. The stack resides in
the RAM space of the 8051, which was diagrammned and explained. Manipulation
of the stack via POP and PUSH instructions was also explored.

CHAPTER 2: 8051 ASSEMBLY LANGUAGL FRUGKRAMMING 59

PROBLEMS
SECTION 2.1: INSIDE THE 8051

Most registers in the 8051 are bits wide.
Registers RO - R7 are all bits wide
Registers ACC and B are bits wide.
Name a 16-bit register in the 8051.
To load R4 with the value 65H, the pound sign is (necessary,
optional) in the instruction "MOV R4, # 65H".
6. What is the result of the following code and where is it kept?
MOV A, #15H '
MOV R2, #13H
ADD A,R2
7. Which of the following is (are) illegal?
(a) MOV R3, #500 (b) MOV R1,#50 (c)MOV R7, 00"
(dy MOV A, #255H (e)MOV A, #50H (f) MOV A, #F5H
(g) MOV R9, #50H
8. Which of the following is (are) illegal?
(a) ADD R3,#50H (b)ADD A, #50H (c) ADD R7,R4
(d) ADD A, #255H (e) ADD A,RS (f) ADD A, #F5H
(g) ADD R3,A
9. What is the result of the following code and where is it kept?
MOV R4, #25H
MOV A, #1FH

e S

ADD A,R4
10. What is the result of the following code and where is it kept?
MOV A, #15
MOV RS, #15
ADD A,R5

SECTION 2.2: INTRODUCTION TO 8051 ASSEMBLY PRCGRAMMING and
SECTION 2.3: ASSEMBLING AND RUNNING AN 8051 PROGRAM

11. Assembly language is a (low, high) level language while C is a
(low, high) level language.

12. Of C and Assembly language, which is more efficient in terms of code gener-
ation (i.e., the amount of ROM space it uses)?

13. Which program produces the "obj" file? ‘

14. True or false. The source file has the extension"src" or "asm".

15. Which file provides the listing of error messages?

16. True or false. The source code file can be a non-ASCII file.

17. True or {alse. Every source file must have ORG and ENL directives.

18. Do the ORG and END directives produce opcodes?

19. Why are the ORG and END directives also called pseudocode?

20. True or false. The ORG and END directives appear in the ".Ist" file.

60

SECTION 2.4: THE PROGRAM COUNTER AND ROM SPACE IN THE 8051

21. Every 8051 family member wakes up at address when it is powered up.

22. A programmer puts the first opcode at address 100H. What happens when the
microcontroller is powered up?

23. Find the number of bytes cach of the following instructions take.
(a) MOV A, #55H (b) MOV R3,#3 () INC R2
(d) ADD A, #0 (e) MOV A,R1 (Hh MoV R3,A
(g) ADD E,R2

24. Pick up a program listing of your choice, and show the ROM memory address-
es and their contents.)

25. Find the address of the last location of on-chip ROM for each of the follow-
ing.
(a) DS5000-16 (b) DS5000-8 (c) DS5000-32
(d) AT89CS52 (e) 8751 (f) AT89CS1
(g) DS5000-64

26. Show the lowest and highest values (in hex) that the 8051 program counter can
take.

27. A given 8051 has 7FFFH as the address of its last location of on-chip ROM.
What is the size of on-chip ROM for this 80517

28. Repeat Question 27 for 3FFH.

SECTION 2.5: 8051 DATA TYPES AND DIRECTIVES

29. Compile and state the contents of each ROM location for the foilowing data.
ORG 200H
MYDAT 1: DB “Earth”
MYDAT 2: DB “987-65"
MYDAT 3: DB “GABEH 98"

30. Compile and state the contents of each ROM location for the following data.
ORG 340H

DAT 1: DE 22,56H,10011001B,32,0F6H,11111011B
SECTION 2.6: 8051 FLAG BITS AND THE PSW REGISTER

31. The PSW is a(n) -bit register.

32. Which bits of PSW are used for the CY and AC flag bits, respectively?
33. Which bits of PSW are used for the OV and P flag bits, respectively?
34. In the ADD instruction, when is CY raised?

35. In the ADD instruction, when is AC raised?

36. What is the value of the CY flag after the following code?

CLR C ;CY = 0
CPL C ;complement carry
37. Find the CY flag valuc : (ter each of the following codes.
{a; MOV R #5141 (bYMOV A, #00 (c) MOV A, #250
ADD A, #0C4H ADD A, #0FFH Ann AL #E0S

38. Write a simple program in which the value S5H is added S times.

CHAPTER 2: 8051 ASSEMBLY LANGUAGE PROGRAMMING 61

SECTION 2.7: 8051 REGISTER BANKS AND STACK

39.
40.
41.
42.
43.
44.
45.

46.
47.
48.

49.

50.

Which bits of the PSW are responsible for selection of the register banks?

On power up, what is the location of th first stack?

In the 8051, which register bank conflicts with the stack?

[n the 8051, what is the size of the stack pointer (SP) register?

On power up, which of the register banks is used ?

Give the address locations of RAM assigned to various banks.

Assuming the use of bank 0, find at what RAM location each of the following

lines storcd the data.

(a) MOV R4, #32H (b) MOV RO, #12H

(c) MOV R7, #3FH (d)MOV R5, #55H

Repeat Problem 45 for bank 2.

After power up, show how to select bank 2 with a single instruction.

Show the stack and stack pointer for each line of the foliowing program.
ORG O

MOV RO, #66H
MOV R3, #7FH
MOV R7, #5DH
PUSH O
PUSH 3
PUSH 7
CLR A
MOV R
MOV
_POP
POP
POP O
In Problem 48, does the sequence of POP instructions restore the original val-
ues of registers R0, R3, and R7? If not, show the correct sequence of instruc-
tions.
Show the stack and stack pointer for each line of the following program.
ORG O
MOV SP, #70H
MOV RS, #66H
MOV R2, #7FH
MOV R7, #5DH

3, A
T,A

4

~ W W

PUSH 5 -
PUSH 2

PUSH 7

CLR A

MOV R2,A

MOV R7,A |

PCP 7

POP 2

PODP 5

0L

ANSWERS TO REVIEW QUEST!ONS

SECTION 2.1: INSIDE THE 8051

1. MGV A#34H
MOV B,#3FH
ADPD A,B
2. MOV A#I6H
ADD A #0CDH
MOV RZ,A
False
+ FF hex and 255 in decimal
8

[

SECTION 2.2: INTRODUCTION TO 8051 ASSEMBLY PROGRAMMING

The real work is performed by instructions such as MOV and ADD. Pseudo-instructions, also
called assembly directives, instruct the assembler in doing its job.

2. The instruction mnemonics, pseudo-instructions
3. False

4, All except (c)

5. Assembler directive

6. True

7. (©)

SECTION 2.3: ASSEMBLING AND RUNNING AN 8051 PROGRAM

1. True 2. True 3.(2) 4. (b) and (d) 5. (d)
SECTION 2.4: THE PROGRAM COUNTER AND ROM SPACE IN THE 8051
1. 16 2. True 3. 0000H 4.2

5. With 8K bytes, we have 8192 (8 x 1024 = 8192) bytes, and the ROM space is 0000 to |FFFH.

SECTION 2.5: 8051 DATA TYPES AND DIRECTIVES

1. DB 2.7
3. If the value is to be changed later, it can be done once in one place instead of at every occur-
rence.

4. (a)4 bytes (b)7 bytes
5. This places the ASCII values for each character in memory locations starting at 200H. Notice
that all values are in hex.
200 = (41)
201 = (42)
202 = (43)
203 =(31)
204 = (32)
205 =33

CHAPTER 2: 8051 ASSEMBLY LANGUAGE PROGRAMMING 63

SECTION 2.6: 8051 FLAG BITS AND THE PSW REGISTER

1. PSW (program status register) 2. 8 bits
3. DI and DS which are referred to as PSW.1 and PSW.5, respectively.
4,
Hex binary
FF 1111 1111
+ _1 + 1
100 10000 0000 This leads to CY=I and AC=1
S.
Hex binary
Cc2 1100 0010
+ 3D + 0011 1101
FF 1111 1111

This leads to CY =0 and AC = 0.

‘SECTION 2.7: 8051 REGISTER BANKS AND STACK

[. 8-bit 2. Incremented 3. Decremented
4. 08 5.0 6.0-7

7. Register bank 3

8. RAM locations 18H to 1FH

04

CHAPTER 3

JUMP, LOOP, AND CALL

INSTRUCTIONS

OBJECTIVES

Upon completion of this chapter, you will be able to:

>3
>3
S
-
S
>
S
S
>3
>3

Code 8051 Assembly language instructions using loops

Code 8051 Assembly language conditional jump instructions
Explain conditions that determine each conditional jump instruction
Code long jump instructions for unconditional jumps

Code short jump instructions for unconditional short jumps
Calculate target addresses for jump instructions

Code 8051 subroutines _

Describe precautions in using the stack in subroutines

Discuss crystal frequency versus machine cycle

Code 8051 programs to generate a time delay

65

In the sequence of instructions to be executed, it is often nccessary to trans-
fer program control to a different location. There are many instructions in the 8051
to achieve this. This chapter covers the control transfer instructions available in
8051 Assembly language. In the first section we discuss instructions used for loop-
ing, as well as instructions for conditional and unconditional jumps. In the second
section we examine CALL instructions and their uses. In the third section, time
delay subroutines are described.

SECTION 3.1: LOOP AND JUMP INSTRUCTIdNS

In this section we first discuss how to perform a looping action in the 8051
and then talk about jump instructions, both conditional and unconditional.

Looping in the 8051

_ Repeating a scquence of instructions a certain number of times is called a
loop. The loop is one of most widely used actions that any microprocessor per-
forms. In the 8051, the loop action is performed by the instruction “DJNZ reg,
1abel”. In this instruction, the register is decremented; if it is not zero, it jumps
~ to the target address referred to by the label. Prior to the start of the loop the reg-
ister is loaded with the counter for the number of repetitions. Notice that in this
instruction both the register decrement and the decision to jump are combined into

a single instruction.

Example 3-1

Write a program (o
(a) clear ACC, then
(b) add 3 to the accumulater ten times.

Solution:

;This program adds value 3 to the ACC ten times

MOV A, #C) ;A=0, clear RARCC
MOV R2,#10 - ;load counter R2=10
AGAIN: ADD A, #03 ;add 03 to ACC |
DJNZ R2,AGAIN ;repeat until R2=0(10 times)
- MOV R5,A ;save A in RS

In the program in Example 3-1, the R2 register is used as a counter. The
counter is first set to 10. In each iteration the instruction DJNZ decrements R2 and
checks its value. If R2 is not zero, it jumps to the target address associated with
label “AGAIN”. This looping action continues until R2 becomes zero. After R2
be...mes zero, it falls through the loop and execut.:- the instruction immediately
below it, in this case the “MOV RS, A” instruction. »

Notice in the DJNZ instruction that the registers can be any of RO - R7.
The counter can also be a RAM location as we will see in Chapter 5.

66

Example 3-2

What is the maximum number of times that the loop in Example 3-1 can be repeated?
Soiution:

Since R2 holds the count and R2 is an 8-bit register, it can hold a maximum of FFH
(255 decimal); therefore, the loop can be repeated a maximum of 256 times.

Loop inside a locp

As shown in Example 3-2, the maximum count is 256. What happens if we
want {o repeat an action more times than 2567 To do that, we use a loop inside a
loop, which is called a nested loop. In a nested loop, we use two registers to hold
the count. See Example 3-3.

Example 3-3

Write a program to (a) load the accumulator with the value 55H, and (b) complement
the ACC 700 times.

Solution:

!
/

Sifice 700 is larger than 255 (the maximum capacity of any register), we use two regis-
ters to hold the count. The following code shows how to use R2 and R3 for the count.

i

MOV A, #55H ; A=55H

MOV R3,#10 ;R3=10, the outer loop count
NEXT: MOV R2,#70 :R2=70, the inner loop count
AGAIN: CPL A ;complement A register

DJNZ R2,BGAIN ;repeat it 70 times (inner loop)
DJINZ R3,NEXT

In this program, R2 is used to keep the inner loop count. In the instruction “DINZ
R2, ACAIN", whenever R2 becomes 0 it falls through and “DJINZ R3, NEXT” is exe-
cuted. This instruction forces the CPU to load R2 with the count 70 and the inner loop

starts again. This process will continue until R3 becomes zero and the outer loop is fin-
ished.

Other conditional jumps

Conditional jumps for the 8051 are summarized in Tabie 3-1. More details
of each irs'ruction are provided in Appendix A. [n Table = !, notice that some of
the instructions, such as JZ (jump if A = zero) and JC (jump if carry), jump only
+ a certain condition is met. Next wc crainine some conditisnal jump instructions
with examples.

CHAPTER 3: JUMP, LOOP, AND CALL INSTRUCTIONS 67

JZ (jump if A =0)

In this instruction the content of register A is checked. If it is zero, it jumps
to the target address. For example, look at the following code.

MOV A,RO ;A=R0O :
JZ OVER ;jump if A = 0
MOV A,R1 ;A=R1
JZ . OVER ;jump if A = 0
OVER: Table 3-1: 8051 Conditional Jump Instructions
In this program, if either Instruction Action
RO or R1 is zero, it jumps to the JZ Jump ifA=0
label OVER. Notice that the JZ JNZ Jump if A= 0
instruction can be used only for DINZ Decrement and jump if A #(
register A. It can only check to CINE A,byte Jump if A = byte
sec whether the accumulator is CJNE reg,#data Jump if byte = #data
zero, and it does not apply to any JC Jump if CY =1
other register. More importantly, JNC Jump if CY =0
you don’t have to perform an JB Jump if bit = 1
arithmetic instruction such as JNB Jump if bit=0 :
decrement to use the INZ instruc- JBC Jump if bit = 1 and clear bit;

tion. See Example 3-4.

Example 3-4

Write a program to determine if RS contains the vaiue 0. If so, put 55H in ii.

Solution:
MOV A, R5 ;copy R5 to A
JNZ NEXT ;jump if A is not zero
MOV RS, #55H

NEXT :

JNC (jufnp if no carry, jumps if CY = 0)

In this instructicn, the carry flag bit in the flag (PSW) register is used to
make the decision whether to jump. In executing “JNC label”, the processor
locks al the carry flag to see if it is raised (CY = 1). If it is not, the CPU starts to
fetch and execute instructions from the address of the label. If CY = 1, it will not
jump but will execute the next instruction below JNC. =~

It needs to be noted that there is also a “JC label” instruction. In the JC
instruction, if CY =1 it jumps to the target address. We will give more examples
of these instru:tions in the context of applications in future che:ers.

There is also a JB (jump if bit is high) and INB (jump it bit is low). These
are discussed in Chapters 4 and 8 when bit manipulation instructions are dis-
cussed. :

68

Example 3-5 .
Find the sum of the values 79H, FSH, and E2H. Put the sum in registers RO (low byte)
and RS (high byte).
Solution:
MOV A, #0 ;clear A(A=0)
MOV R5,A ;clear RS
ADD A, #79H ;A=04+79H=79H
JNC N 1 ;1f no carry, add next number
INC RS ;if CY=1, increment R5
N _1: ADD A, #OFSH ;A=79+F5=6E and CY=1
JNC N_2 ;jump if CY=0
INC RS ;If CY=1 then increment R5(R5=1)
N_Z: ADC A, #0E2H ;A=6E+E2=50 and CY=1
JNC OVER ;jump if CY=0
INC R5 ;1if CY=1, increment 5
OVER:MOV RO, A ;Now RO=50H, and R5=02

All conditiona! jumps are short jumps

[t must be noted that all conditional jumps are short jumps, meaning that
the address of the target must be within —128 to +127 bytes of the contents of the

program counter {PC). This very important concept is discussed at the end of this
section.

Unconditional jump instructions

The unconditional jump is a jump in which control is transferred uncondi-
tionally to the target location. In the 8051 there are two unconditional jumps:
LIMP (long jump) and SIMP (short jump). Each is discussed below.

LJMP (longa jump)

LIMP is an unconditional long jump. It is a 3-byte instruction in which the
first byte is the opcode, and the second and third bytes represent the 16-bit address
of the target location. The 2-byte target address allows a jump to any memory loca-
tion from 0000 to FFFFH.

Remember that although the program counter in the 8051 is 16-bit, there-
by giving a ROM address space of 64K bytes, not all 8051 family members have
that much on-chip program ROM. The original 8051 had only 4K bytes of on-chip
ROM for program space; consequently, every byte was precious. For this reason
there is also a SJIMP (short jump) instruction which is a 2-byte instruction as
opposed to the 3-byte LIMP instruction. This can save some bytes of memory in
many applications where meiory space is in short supply. SIMP is discussed i xt.

SJNMP (short jump)

[n this 2-byte instruction, the first byte is the opcode and the second byte
is the relative address of the target location. The relative address range of 00 - FFH

CHAPTER 3: JUMP, LOOP, AND CALL INSTRUCTIONS 69

is divided into forward and backward jumps; that is, within -128 to +127 bytes ot
memory relative to the address of the current PC (program counter). If the jump is

forward, the iarget address can be within a space of 127 bytcs from the current PC.

If the target address is backward, the target address can be within -128 bytes from

the current PC. This is explained in detail next.

Calculating the short jump address

In addition to the SIMP instruction, all conditional jumps such as INC, JZ,
and DJNZ are also short jumps due to the fact that they are all two-byte instruc-
tions. In these instructions the first byte is the opcode and the second byte is the
relative address. The target address is relative to the value of the program counter.
To calculate the target address, the second byte is added to the PC of the instruc-
tion immediately below the jump. To understand this, look at Example 3-0.

Example 3-6

Using the following list file, verify the jump forward address calculation.

Line PC Opcode Mnemonic Operand
01 0000 ORG 0009

02 0000 7800 - MOV RO, #0
03 0002 7455 MOV A, #55H
04 0004 6003 : JZ NEXT
05 0006 08 INC RO

06 0007 04 AGAIN: INC A

07 0008 04 INC A

08 0009 2477 NEXT : ADD A, #77h
09 0COBR 5005 JNC OVER
10 000D E4 CLR A

11 000E F8 MOV RO,A
12 000F FO MOV R1,A
13 0010 FA MOV R2,A
14 0011 FB MOV R3,A
15 0012 2B OVER: ADD A,R3
16 0013 50F2 JNC AGAIN
17 0015 80FE HERE: SJMP HERE
18 0617 END

Solution:

label OVER.

First notice that the JZ and JNC instructions both jump forward. The target address|
a forward jump is calculated by adding the PC of the following instruction-to the s
ond byte of the short jump instruction, which is called the relative address. In line 4
instruction “JZ NEXT” has opcode of 60 and operand of 03 at the addresses of 00043
0005. The 03 is the relative address, relative to the-address of the next instruction I
RO, which is 0006. By adding 0006 to 3, the target address of the label NEXT, which
0009, is generated. In the same way for line 9, the “/NC OVER” instruction has opc
and operand of 50 and 03 where 50 is the opcode and 05 the relative addrcss. Therefa
05 is added to 000D, thic address of instruction “CLR A”, giving 12H, ihe address

70

Example 3-7

Verify the calculation of backward jumps in Example 3-6.

Solution:

In that program list, “JNC AGAIN” has cpcode 50 and relative address F2H. When the
relative address of F2H is added to 15H, the address of the instruction below the jump,
we have 15H + F2H = 07 (the carry is dropped). Notice that 07 is the address of label
AGAIN. Look also at “SJMP HERE”, which has 80 and FE for the opcode and rela-
tive address, respectively. The PC of the following instruction, 0017H, is added to FEH,
the relative address, to get 0015H, address of the HERE label (17H + FEH = 15H).
Notice that FEH is -2 and 17H + (-2) = 15H. For further discussion of the addition of
negative numbers, see Chapter 6.

Jump backward target address calculation

While in the case of a forward jump, the displacement value is a positive
number between 0 to 127 (00 tc 7F in hex), for the backward jump the displace-
ment is a negative value of 0 to -128 as explained in Example 3-7.

It must be emphasized that regardless of whether the SIMP is a forward or
backward jump, for any shert jump the address of the target address can never be
more than —128 to +127 bytes from the address associated with the instruction
below the SIMP. If any attempt is made to violate this rule, the assembler will gen-
erate an error stating the jump is out of range.

Review Questions

1. The mnemonic DINZ stands tor

2. True or false. “DIJNZ R5, BACK” combines a decrement and a jump in a sin-
gle instruction.

“JNC HERE”isa Z -byte instruction.

In “JZ NEXT”, which register’s content is checked to see if it is zero? ¢ A)
5. LIMPisa 3 -byte instruction.

Ll

SECTION 3.2: CALL INSTRUCTIONS

Another control transfer instruction is the CALL instruction, which is used
to call a subroutine. Subroutines are often used to perform tasks that need to be
performed frequently. This makes a program more structured in addition to saving
memory space. In the 8051 there are two instructions for call: LCALL (long call)
and ACALL (absolute call). Deciding which one to use depends on the target
address. Each instruction is explained next.

LCALL (long cail)

In this 3-byte instruction, the first byte is the opcode and the second and
third bytes are used for the address of the target subroutine. Therefore, LCALL can
be used to call subroutines located anywhere within the 64K byte address space of

CHAPTER 3: JUMP, LOOP, AND CALL INSTRUCTIONS 71

the 8051. To make sure that afler execution of the called subroutine the 8051
knows where to come back to, it automatically saves on the stack the address of
the instruction immediately below the LCALL. When a subroutine is called, con-
trol is transferred to that subroutine, and the processor saves the PC (program
counter) on the stack and begins to fetch instructions from the new location. After
finishing execution of the subroutine, the instruction RET (return) transfers con-
trol back to the caller. Every subroutine needs RET as the last instruction. See
Example 3-8.
The following points should be noted for the program in Example 3-8.
l. Notice the DELAY subroutine. Upon executing the first “LCALL DELAY”,
‘the addrcss of the instruction right below it, “MOV A, # 0AAH”, is pushed onto
the stack, and the 8051 starts to execute insiructions at address 300H.

2. In the DELAY subroutine, first the counter RS is set to 255 (RS = FFH); there-
fore, the loop is repeated 256 times. When R5 becomes 0, control falls to the
RET instruction which pops the address from the stack into the program count-
er and resumes executing the instructions after the CALL.

Example 3-8

Write a program to toggle all the bits of port 1 by sending to it the values 55H and AAH
continuously. Put a time delay in between each issuing of data to port 1. This program
will be used to test the ports of the 8051 in the next chapter.

Solution:

ORG 0 |
BACK: MOV A, #55H - ;load A with 55H

MOV P1,A ;send 55H to port 1

LCALL DELAY ;time delay

MoV A, #0AAH ;load A with AA (in hex)

MOV, Pi,A ;send BAH to port 1

LCALL DELAY

SJMP BACK ;keep doing this indefinitely
;———— this is the delay subroutine

ORG 3G0H ;put time delay at address 300H
DELAY: MOV R5, #0FFH ;R5=255(FF in hex),the counter
AGAIN: DJNZ RS,AGAIN ;stay here until RS becomes 0

RET - ;return to caller (when R5 = 0)

END ;end of asm fil-= ‘

The amount of time delay in Example 3-8 depends on the frequency of the
8051. How to calculate the exact time will be explained in detail in Chapter 4.
However you can increase the time delay by using a nested loop as shown below.

DELAY: ;nested loqQp delay
MOV R4, #255 ;R4=255(FF in hex)
NEXT: MOV RS, #255 ;R5=255(FF in hex)
AGAIN: DJNZ R5,AGA™ ;stay here until R5 becomes ¢

DJNZ R4,NEXT ;decrement R4
;keep loading R5 until R4=0
RET ;return (when R4 = 0)

72

CALL instruction and the role of the stack

The s:=ck and stack pointer were covered in the last chapter. To understand
the importance of the stack in microcontrollers, we now examine the contents of
the stack and stack pointer for Example 3-8. This is shown in Example 3-9.

pxample 3-9

Analyze the stack contents after the execution of the first LCALL in the following.

Solution:

001 0000 ORG O

002 0000 7455 BACK: MOV A, #55H ;:load A with 55H
003 0002 F590 MOV P1,A :send 55H to port 1
004 0004 120300 LCALL DELAY ;time delay

005 0007 74AA MOV A, #0AAH; load A with AAH
006 0009 F590 MOV P1l,A ;send AAH to port 1
-007 000B 120300 LCALL DELAY

008 OOOE 80FO0 SJMP BACK ; keep doing this
009 0010

010 0010 ;———this is the delay subroutine

011 0300 ORG 300H

012 C©€3G0 DELAY:

013 0300 7DFF MOV RS, #0FFH ;R5=255

014 0302 DDFE AGAIN: DJNZ R5,AGAIN ;stay here

015 0304 22 RET .return to caller

016 0305 END ;end of asm file

When the first LCALL is executed, the address of the instruction

“MOV A, #0AAH” is saved on the stack. Notice that the low byte ~ 0A
gaes first and the high byte is last. The last instruction of the called
subroutine must be a RET instruction which directs the CPU to 09 00
POP the top bytes of the stack into the PC and resume executing
at address 07. The diagram shows the stack frame after the

first LCALL.

08 07

SP =09

Use of PUSH and POP ins_tructions in subroutines

Upon calling a subroutine, the stack keeps track of where the CPU should
return after completing the subroutine. For this reason, we must be very careful in
any manipulation of stack contents. The rule is that the number of PUSH and POP
instructions must always match in any called subroutine. In other words, for every
PUSH there must be a POP. See Example 3-10. T

Calling subroutines

In Assembly ianguage programming it is common to have one main pro-
gram and many subroutines that are called from the main program. This allows
you to make each subroutine into a separatc module. Each module can be tested
senartcly and tien oI ight togethor with the main program. More importantly, in
a large program the modules can be assigned to different programimers in order W
shorten development time.

CHAPTER 3: JUMP, LOOP, AND CALL INSTRUCTIONS 73

|Example 3-10

0000
0000
0002
0004
0006
0008
000B
00CD
O000F
0012
0014
0300
0300
0302
0304
0306
0308
030Aa
030C
030E
0310
0311

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22

Solution:

0B

0A

08

Analyze the stack for the first LCALL instruction in the following program.

;load A-with S55H
;send 55H to port 1

;time delay
;Load A with AA
;send AAH to port 1

;keep doing this

;———this is the delay subroutine

ORG O
7455 BACK: MOV A, #55H
F590 MOV P1,A
7C99 MOV R4, #99H
7D67 MOV " RS, #67H
120300 LCALL DELAY
T4AA MOV A, #DAAH
F590 MOV P1,A
120300 LCALL DELAY
80EC SJMP BACK

ORG 300H
C004 DELAY:PUSH 4
C005 PUSH 5
1CFF MOV R4, #0FFH
7DFF NEXT: MOV R5, $#0FFH
DDFE AGAIN:DJNZ RS5,AGAIN
DCFA DJINZ R4,NEXT
D005 POP 5
D004 POP 4
22 RET

END

After the first LCALL

9 00 pcy

0B

; PUSH R4
; PUSH RS
; R4=FFH
;R5=255

; POP INTO RS
; POP INTO R4
;return to caller
;end of asm file

First notice that for the PUSH and POP instructions we must specify the direct address
of the register being pushed or popped. Here is the stack frame.

After PUSH 4 After PUSH 5
0B 0B 47 RS
0A 99 R4 0A 99 R4
09 00 PCH 0 oo PCH
PCL 08 0B PCL 08 o PCL

It needs to be emphasized that in usine LCALL, the target address of the
subroutine can be anywhere within the 64K bytes memory space of the 8051. This
is not the case for the other call instruction, ACALL, which is explained next.

74

;MAIN program calliﬁg subroutines
ORG O
MAIN: T.CALL SUBR_l
LCALL SUBR_2
LCALL SUBR_3
HERE: SJIJMP HERE
;———"-—~end of MAIN
SUBR_‘lz
RET
- ——end of subroutine 1
SUBR_2:
RET
;T end of subroutine 2
SUBR_3:
RET
;————end of subroutine 3
END ;end of the asm file

Figure 3-1. 8¢51 Assembly Main Program That Cal!s Subr

ACALL (absolute cali)

ACALL is a 2-byte instruction in contrast to LCALL, which is 3 bytes.
Since ACALL is a 2-byte instruction, the target address of the subroutine must be
within 2K bytes address because only 11 bits of the 2 bytes are used tor the

address. There is no difference between ACALL and LCAL
the program counter on the stack or the function cf the RET instructt

L in terms of saving
on. The oniy

difference is that the target address for LCALL can be anywhere within the 64K
byte address space of the 8051 while the target address of ACALL must be with-
in a 2K-byte range. In many variations of the 8051 marketed by different compa-
nies, on-chip ROM is as low as 1K bytes. In such cases, ihe use of ACALL instead

of LCALL can save a number of bytes of program ROM space. -

" |Example 3-11

ACALL is most useful in programming this chip?

Solution:

each time the call instruction is used.

A developer is using the Atmel AT89C1051 microcontroller chip for a product. This
chip has only 1K bytes of on-chip flash ROM. Which of the instructions LCALL and

The ACALL instruction is more useful since it is a 2-byte instruction. It saves one byte

CHAPTER 3: JUMP, LOOP, AND CALL INSTRUCTIONS

75

Of course in addition to using compact instructions, we can program effe-
ciently by having a detailed knowledge of all the instructions supported by a given
microprocessor, and using them wisely. Look at Example 3-12.

Example 3-12

Rewrite Example 3-8 as efficiently as you can.

Solution:
: ORG O
MOV A, #55H ;load A with 55H ,
BACK: MOV P1,A ;issue value in reg A to port 1
ACALL DELAY ;time delay
CPL A ;complement reg A E
SJMP BACK ;keep doing this indefinitely
;———this is the delay subroutine
DELAY:
- MOV RS, #0FFH ;R5=255(FF in hex),the counter
AGAIN: DJINZ R5,AGAIN ;stay here until R5 becomes 0
RET ;return to caller
END ;end of asm file

Notice in this program that register A is set to 55H. By complementing 55H, we hav
AAH; and by complementing AAH we have 55SH. Why? “01010101” in binary (55H
pecomes “10101010” in binary (AAH) when it is complemented; and “10101010'
becomes “01010101” if it is complemented. ’

Review Questions

1. What do the mnemonics “LCALL” and “ACALL” stand for?

True or false. In the 8051, control can be transferred anywhere within the 64K
bytes of code space if using the LCALL instruction.

How does the CPU know where to return to after executing the RET instruc-
tion? : :
4. Describe briefly the function of the RET instruction.
5. The LCALL instruction isa ___ -byte instruction.

I

SECTION 3.3: TIME DELAY GENERATION AND CALCULATION

In the last section we used the DELAY subroutine. How to gener;ite vari-
ous time delays and calculate exact delays is discussed in this section.

Machine cycle

For the CPU to execute an instruction takes a certain number of clock
cycles. I the 8051 family, these clock cycles are referrcd to as machine cycles.
Appendix A.2 provides the list of 8051 instructions and ticir machine cycles. To
calculate a time delay, we use this list. In the 8051 family, the length of the
machine cycle depends on the frequency of the crystal oscillator connected to the

76

8051 system. The crystal oscillator, along with on-chip circuitry, provide the clock
source for the 8051 CPU (see Chapter 4). The frequency of the crystal connccted
to the 8051 family can vary from 4 MHz to 30 Milz, depending on the chip rating
and manufacturer. Very often the 11.0592 MHz crystal oscillator is used to make
the 8051-based system compatible with the serial port of the [BM PC (see Chapter
10). In the 8051, one machine cycle tasts 12 oscillator periods. Therefore, to cal-
culate the machine cycle, we take 1/12 of the crystal frequency, then take its
inverse, as shown in Example 3-13.

Example 3-13

The following shows crystal frequency for three different 8051-based systems. Find the
period of the machine cycle in each case.
(a) 11.0592 MHz (b) 16 MHz (c) 20 MHz

| Solution:
(a)11.0592/12 = 921.6 kHz; machine cycle is 1/921.6 kHz = 1.085 us (microsecond)

(b) 16 MHz/12 = 1.333 MHz; machine cycle (MC) = 1/.1.333 MHz = 0.75 ps
(c) 20 MHZz/12 = 1.66 MHz; MC = 1/1.66 MHz = 0.60 s

Example 3-14

For an 8051 system of 11.0592 MHz. find how long it takes to execute each of the fol-
lowing instructions. '

(a) 4OV R3,#55 (b) DEC R3 (c) DJNZ R2, target
(d) LJMP () SJIMP (f) NOP (no operation)
(g) MUL AB

Solution:

The machine cycle for a system of 11.0592 MHz is 1.085 ps as shown in Example 3-
13. Table A-1 in Appendix A shows machine cycles for each of the above instructions.
Therefore, we have: ‘ :

Instruction - Machine cycles Time to execiite -

(a) MOV R3,#55 1 1x1.085 ps = 1.085 ps
(b) DEC R3 1 1x1.085 ps = 1.085 us
(c) DIJNZ R2, target 2 2%x1.085 ps = 2.17 ps
(d) LIMP 2 2x1.085 ps = 2.17 ps
(e) SJM™MPp 2 2x1.085 us = £.1/ us
(f) NOP 1 1x1.085 ps = 1. '35 us
(g) MUL AB 4 4x1.085 ps = 4.34 ps

CHAPTER 3: JUMP, LOOP, AND CALL INSTRUCTIONS

77

Delay calculation

As seen in the last section, a delay subroutine consists of two parts: (1) set-
ting a counter, and (2) a loop. Most of the time delay is performed by the body of
the loop, as shown in Example 3-15.

Example 3-15

Find the size of the delay in the following program, if the crystal frequency is 11.0592
MHz.

MOV A, #55H

AGAIN: MOV P1,A
ACALL DELAY
CPL A
SJMP AGAIN

;———--Time delay

DELAY: MOV R3, #200

HERE: DJNZ R3, HERE
RET

Solution:

From Table A-1 in Appendix A, we have the following machine cycles for each instruc-
tion of the DELAY subroutine.

~ R . Machine Cycle
DELAY: = MOV K3, $#200 1

HERE: = DJNZ R2,HERE 2
RET o 1

Therefore, we have a time delay of [(200 x 2) + 1 + 1] x 1.085 ps = 436.17 ps.

Very often we calculate the time delay based on the instructions inside the
loop and ignore the clock cycles associated with the instructions outside the loop.
In Example 3-15, the largest value the R3 register can take is 255; there-

fore, one way to increase the delay is to use NOP instructions in the loop. NOP,
- which stands for “no operation,” simply wastes time. This is shown in Example 3-

16.
Locp inside loop delay

Another wuy to get a large delay is to use a loop inside a loo, which is also
called a nested loop. See Example 3-17.

78

|Example 3-16

| Find the time delay for the following subroutine, assuming a crystal frequency of

111.0592 MHz.
Machine Cycle
DELAY: MOV R3, #250 1
HERE: NOP 1
NOP 1
NOP 1
NOP 1
DJINZ R3, HERE 2
RET 1

Solution:

The time delay inside the HERE loop is {250 (1+1+1+1+2)] x 1.085 ps = 1500 x 1.085
us = 1627.5 ps. Adding the two instructions outside the loop we have 1627.5 ps + 2 x
1.085 us = 1629.67 ps.

Example 3-17

For a machine cycle of 1.085 ps, find the time delay in the following subroutine.

DELAY : Machine Cycle
MOV R2, #200 1
AGAIN: MOV R3, #250 1
HERE: NOP 1
NOP 1
DJINZ R3,HERE 2
. DONZ R2,AGAIN 2
RET 1

For the HERE loop, we have (4 x 250) 1.085 us = 1085 ps. The AGAIN160p repeats
the HERE loop 200 times; therefore, we have 200 x 1085 us = 217000, if we do not
include the overhead. However, the instructions "MOV R3, #250" and "DJINZ
R2, AGAIN" at the beginning and end of the AGAIN-loop add (3 x 200 x 1.085 ps) =
651 ps to the time delay. As a result we have 217000 + 651 =217651 ps =217.651 mil-
liseconds for total time delay associated with the above DELAY subroutine. Notice that
in the case of a nasted loon as in all other time delay loops, th: time is approximate
since we have ignored the first and last instructions in thc subroutiie.

CHAPTER 3: JUMP, LOOP, AND CALL INSTRUCTICNC - 79

Review Questions
1. True o« false. In the 8051, the machine cycle lasts 12 clock cycles of the crys-

tal frequency. . _
2. The minimum number of machine cycles needed to execute an 8051 instruc-

tion is

‘For Question 2, what is the maximum number of cycles needed, and for which

instructions?

4. Find the machine cycle for a crystal frequency of 12 MHz.

5. Assuming a crystal frequency of 12 MHz, find the time delay associated with
the loop section of the following DELAY subroutine.

I

DELAY:
MOV R3, #100
HERE: NOP
NOP
NOP
DJNZ R3, HERE
RET
SUMMARY

The flow of a program proceeds sequentially, from instruction to instruc-
tion, unless a control transfer instruction is executed. The various types of control
transfer instructicns in Assembly language include conditional and unconditional
iumps, and call instructions.

The looping action in 8051 Assembly language is performed using a spe-
cial inetruction which decrements a counter and jumps to the top of the loop if the
counter is not zero. Other jump instructions jump conditionally, based on the value
of the carry flag, the accumulator, or bits of the I/O port. Unconditional jumps can
be long or short, depending on the relative value of the target address. Special

attention must be given to the effect of LCALL and ACALL instructions on the
stack.

PROBLEMS

SECTION 3.1: LOOP AND JUMP INSTRUCTIONS

1. In the 8051, looping action with instruction “DIJNZ Rx,rel address”is
limited to ____iterations. "

2. If a conditional jump is not taken, what is the next instruction to be executed?

In calculating the target address for a jump, a displacement is added to the con-

tents of register .)

The mnemonic SIMP stands for and it isa ___ -byte instruction.

The mnemonic LIMP stands for _anditisa ___-byte instruction.

What is the advantage of using SIMI* over LIMP?

True or false. The target of a short jump is within ~128 to +127 bytes of the

current PC.

8. True or false. All 8051 jumps are short jumps.

2

Nown s

--80

10.
1.
12.
13.

14

15.

16.

Which of the foliowing instructions is (are) not a short jump?

(@) JZ (b) INC (¢) LIMP (d) DINZ

A short jump is a ___-byte instruction. Why?

True or false. All conditional jumps are chort jumps.

Show code for a nested loop to perform an action 1000 times.
Show code for a nested loop to perform anr action 100,000 times.

Find the number of times the following loop is performed.

MOV Ro6, #200
BACK: MOV R5,#100
HERE: DJNZ R5,HERE
DJNZ R6,BACK

The target address of a jump backward is a maximum of bytes from
the current PC.
The target address of a jump forward is a maximuin of bytes from

the current PC.

SECTION 3.2: CALL INSTRUCTIONS

17.
18.
19.
29.
21.
22.
23.

24,
25.

LCALL isa __-byte instruction.

ACALL isa _ -byte instruction.

The ACALL target address is limited to ____ bytes from the present PC.

The LCALL target address is limited to _____ bytes from the present PC.
When LCALL is executed, how many bytes of the stack are used?

When ACALL is executed, how many bytes of the stack are used?

Why do the number of PUSH and POP instructions in a subroutine need to be
equal?

Describe the action associated with the PGP instruction.

Show the stack for the following code.

000B 120300 LCALL DELAY

000E 80FO0 SJMP BACK ;keep doing this
0010

0010 ;————this is the delay subroutine

0300 ORG 300H

0300 DELAY :

0300 7DFF MOV R5, #OFFH ;R5=255

0302 DDFE AGAIN: DJNZ R5,AGAIN ;stay here
0304 22 RET ;return

26. Reassemble Example 3-10 at ORG 200 (instead of ORG 0) and show the stack

frame for the first LCALL instruction.

SECTION 3.3:TIME DELAY GENERATION AND CALCULATION

27. Find the system frequency if the machine cycle = 1.2 ps.
78. Find the machinre cycle if crystal frequency is 18 MHz.
29. Find the machine cycle if crystal frequency is 12 MHz.
30. Find the machine cy<le if crystal frequency is 25 MHz.

CHAPTER 3: JUMP, LOOP, AND CALL INSTRUCTIONS sl

31. True or false. LIMP and SJMP instructions take the same amount of time to
execute even though one is a 3-byte instruction and the other one is a 2-bytc
instruction.

32. Find the time delay for the

. h DELAY: MOV R3, #150
dcla){ subroutlne shown to |ypRE. NOP i
the right, if the system f(re- NOP
quency is 11.0592 MHz. NOP
DJINZ R3, HERE
RET .
, , DELAY : MOV R3, #200
33. Find the time delay for the |ngRrg. NOP
aelay subroutine shown to NOP
the right, if the system fre- gggz 3 HERE
. h R3,
quency is 16 MHz. RET
DELAY : MOV RS5, #100
BACK: MOV R2,#200
34. Find the time delay for the |AGAIN: MOV R3,#250
delay subroutine shown to |HFRE: Sgg
the righf., if the system fre- DJINZ R3, HERE
quency is 11.0592 MHz. DJINZ R2,AGAIN
- DINZ R5, BACK
RET
DELAY: MOV R2, #15C
NGAIN: MOV R3, #250
35. Find the time delay for the HERE: ggg
delay subroutine shown to NOP
the right, if the system fre- DJNZ R3, HERE
quency is 16 MHz. DJNZ R2,AGAIN
RET

ANSWERS TO REVIEW QUESTIONS

SECTION 3.1: LOOP AND JUMP INSTRUCT'ONS .
1. Decrement and jump if not zero 2. True 3. 2 4. A 5.3

SECTION 3.2: CALL INSTRUCTIONS

1. Long CALL and Absolute CALL 2. True

3. The address of where to return is in ihe stack.

4. Upon executing the RET instruction, the CPU pops off the top two bytes of the stack into the

program counter (PC) register and starts to execute from this new location.
5. 3

SECTION 3.3: TIME DELAY GENERATION AND CALCULATICN

1. True 2. | 3. MUL and DIV each take 4 machine cycics.
4. 12MHz/12=1 MHz, and MC = I/l MHz = 1 ps.

5. [100 (1+1+1+2)] x 1 ps = 500 ps = 0.5 milliseconds.

82

CHAPTER 4

"~ 1/O PORT
PROGRAMMING

OBJECTIVES

Upon completion of this chapter, you will be able to:

>3
>3
>
=3
>3
>3
>3

Explain the purpose of each pin of the 8051 microcontroller

Lis¢ the 4 ports of the 8051

Describe the dual rele of port 0 in providing both data and addresses
Code Assembly language to use the ports for input or output
Explain the use of port 3 for interrupt signals

Code 8051 instructions for 1/0 handling

Code bit-manipulation instructions in the 8651

83

This chapter describes the 8051 pins and then shows 1/0 port prdgramming
of the 8051 with many examples.

SECTION 4.1: PIN DESCRIPTION OF THE §051

Although 8051 family members (e.g., 8751, 89C51, DS5000) come in dif-
ferent packages, such as DiP (dual in-line package), QFP (quad flat package), and
LLC (leadless chip carrier), they all have 40 pins that are dedicated for various
functions such as /0, RD, WR, address, data, and interrupts. It must be noted that
some companies provide a 20-pin version of the 8051 with a reduced number of
1/0 ports for less demanding applications. However, since the vast majority of
developers use the 40-pin DIP package chip, we will concentrate on that.

PDIP/Cerdip
_/
P1.0[]1 40] Vcc
P1.1]2 39 [] P0.0 (ADO)
P1.2[13 38 [] Po.1 (AD1)
P1.3[]4 8051 37 [] P0.2 (AD2)
P1.4[]5 36 [1 P0.3 (AD3)
P1.5[]6 (8031) 35 [] P0.4 (AD4)
P16 17 34 [] P0.5(AD5)
P78 33 P0.6 (AD6)
I RST L—j 9 32 E] P0.7 (AD7)
RXD)P30[] 10 . 31 [EAVPP
(TXD)P31 [30 [] ALE/PROG
(INTO) P3.2[] 12 29 [] PSEN
(INTT)P3.3 [13 28] P2.7 (A15)
(TOyP3.4 [} 14 27 [] P26 (A14)
(THP35[15 26 [P2.5(A13)
(WR)P3.5[116 ' 25 [P24 (A12)
{RD)P3.7] 17 24] P2.3(A11)
XTAL2[]18 - 23 [1 P22 (A10)
XTAL1 [] 19 22 [] P2.1(A9)
GND [] 20 21 [P2.0 (A8)

Figure 4-1. 8051 Pin Diagram

Examining Figure 4-1, note that of the 40 pins, a total of 32 pins are set
aside for the four ports P0, P1, P2, and P3, where each port takes 8 pins. The rest
of the pins are designuted as Ve, GND, XTALL, XTAL2, RST, EA, PSEN. Of
these 8 pins, six of them (V¢c, GND, XTALI1, XTAL2, RST, and EA) are used by
all members of the 8051 and 8031 families. In other words, they must be connect-
ed in order for the system to work, regardless of whether the microcontroller is of

34 .

the 8051 or 8031 family. The other‘two pins, PSEN and ALE, are used mainly in
303 1-based systems. We first describe the function of cach pin. Ports are discussed

separately.
Vee
Pin 40 provides supply voltage C2
to the chip. The voltage source is +5V. ’ I—— XTAL2
GND 30 pF é ..
Pin 20 is the ground.
Ci I
1
XTAL1 and XTAL2 » XTALA
The 8051 has an on-chip oscil- 30 pF
lator but requires an externai clock to
run it. Most often a quartz crystal
. . . GND
oscillator is connected to nputs
XTALI1 (pin 19) and XTAL2 (pin 18). | =
The quartz crystal oscillator connected

to XTALI and XTAL2 also needs two Figure 4-2 (a). XTAL Connection to 8051
capacitors of 30 pF value. One side of

each capacitor is connected to the
ground as shown in Figure 4-2 (a).

It must be noted that there are NC XTAL2
various speeds of the 8051 family.
Speed refers to the maximum oscilla-
tor frequency copnecth to XTAL. For | exTERNAL
example, a 12-MHz chip must be cen- | QgciLLATOR
nected to a crystal with 12 MHz fre- | giGNAL -
quency or less. Likewise, a 20-MHz
microcontroller requires a crystal fre-
quency of no more than 20 MHz. GND
When the 8051 is connected to a crys-
tal oscillator and is powered up, we

XTAL1

can observe the frequency on the Figure4-2 (b). XTAL Cornection o an
XTAL2 pin using the oscilloscope. ~ External Clock Source

If you decide to use a frequen-
cy source other than a crystal oscilla-

T 4-1: RESET Val fS
tor, such as a TTL oscillator, it will be able 4-1 alue ol Some

connected to. XTAL1l; XTAL2 is left 8051 Regxster§

unconnected, as shown in Figure 4-2 (b). Register Reset Value

PC 0000

RST ACC’ 0000

: R 0000

Pin 9 is the RESET pin. It is an pgw GOOG

input and is active high (normally low). gp 0007

Upon applying a high puise to this pin, DpTR 0000

the microcontroller will reset and termi-
nate all activities. This is often referred to

CHAPTER 4: /O PORT PROGRAMMING 85

as a power-on resef. Activating a
power-on reset will cause all values in
the registers to be lost. Table 4-1 pro-
vides a partial list of 8051 registers
and their valucs after power-on reset.

Notice that the value of the PC
(program counter) is 0 upon reset,
forcing the CPU to fetch the first
opcode from ROM memory location
0000. This means that we must place
the first line of source code in ROM
location 0 because that is where the
CPU wakes up and expects to find the
first instruction. Figure 4-3 shows
two ways of connecting the RST pin
to the power-on reset circuitry.

In order for the RESET input
to be effective, it must have a mini-
mum duration of 2 machine cycles. In
other words, the high pulse must be
high for a minimum of 2 machine
cycles before it is allowed to go low.

In the 8051, a machine cycle
is defined as 12 oscillator periods, as
discussed in Chapter 3, as shown
again in Example 4-1.

EA

The 8051 family members,
such as the 8751, 89C51, or DS5000,
all come with on-chip ROM to store
programs. In such cases, the EA pin is
connected to V.. For family mem-
bers such as the 8031 and 8032 in
which there is no on-chip ROM, code
is stored on an external ROM and is
fetched by the 8031/32. Therefore,
for the 8031 the EA pin must be con-
nected to GND to indicate that the

Vce

|

10 uF - 31

, EANPP
30 pF L i

19
[J11.0592 MHz

30 pF 18
9

RST

Figure 4-3 (a). Power-On RESET Circuit

EA/NVPP

L, The

RST

Figure 4-3 (b). Power-On RESET with Debounce

code is stored externally. EA, which stands for “external access,” is pin number 3 1
in the DIP packages. It is an input pin and must be connected to either V. or

GND. In other words, it cannot be left unconnected.

-

In Chapter 14, we will show how the 8031 uses this pin along with PSEN
to access programs stored in ROM memory iocated outside the 8031. In 8051
chips with on-chip ROM, such as tie 8751, 89C51, or DS5000, EA is connected
to Ve, as we will see in the next section.

86

[Example 4-1

Find the machine cyéle for (a) XTAL = 11.0592 MHz (b) XTAL = 16 MHz.

Solution:
(a)11.0592 MHz / 12 = 921.6 kHz;

machine cycle = 1/921.6 kHz = 1.085 ps
(6)16 MHz / 12 =1.333 MHz;

machine cycle = ! / 1.333 MHz = 0.75 ps

The pins discussed so far must be connected no matter which family mem-
ber is used. The next two pins are used mainly in 8031-based systems and are dis-
cussed in more detail in Chapter 14. The following is a brief description of each.

PSEN

This is an output pin. PSEN stands for “program store enable.” In an 8031-
based system in which an external ROM holds the program code, this pin is con-
nected to the OE pin of the ROM. See Chapter 14 to see how this is used.

ALE

ALE (address latch enable) is an output pin and is active high. When con-
necting an 8031 to external memory, port 0 provides both address and data. In
other words, the 8031 multiplexes address and data through port 0 to save pins.
The ALE pin is used for demultiplexing the address and data by connecting to the
G pin of the 74LS373 chip. This is discussed in detail in Chapter 14.

I/O port pins and their functions

The four ports PO, P1, P2, and P3 each use 8§ pins, making them g-bit ports.
All the ports upon RESET are configured as output, ready to be used as output
ports. To use any of these ports as an input port, it must be programmed, as we will
explain throughout this section. First, we describe each port.

Port 0

Port 0 occupies a total of & pins (pins 32 - 39). It can be used fer input or
output. To use the pins of port 0 as both input and output ports, each pin must be
connected citernally to a 10K ohm pull-up resistor. This is due to the fact that PO
is an open drain, unlike P1, P2, and P3, as we will soon see. Open drain is a term
used for MOS chips in the same way that open collector is used for TTL chips. In
any system using the 8751, 89C51, or DS5000 chips, we normally connect PO to
pull-up resistors. See Figure 4-4. In this way we take advantage of port 0 for both
input and output. With external pull-up resistors connected upon reset, port 0 is
configured as an output port. For example, the following code will continuously
send out to port 0 the alternating values 55H and AAH.

MOV A, #55H
BACK: MOV 0, N
ACALL DELAY
CPL A

SJMP BACK

CWAPTER 4: i/O PORT PROGRAMMING ' 87

Port 0 as input Ve ,
: ’ 10K
With resistors g =
connected to port 0, in ? ?
order to make it an input, 0.0
the port must be pro- PO.1
e DS5000 pp By
grammed by writing 1 to 8751 gg% =
fill the bits. In the t:ollow- 8951 P04 o
ing code, port 0 is con- P0.5
figured first as an input 289
port by writing 1s to it,
and then data is received
from that port and sent to
Pl. Figure 4-4. Port 0 with Pull-Up Resistors

MOV A, #0FFH ;A = FF hex

MOV PO,A ;make PO an input port
;by writing all 1s to it
BACK: MOV A,PO ;get data from PO
MOV P1,A ;send it to port 1
SJMP BACK ;keep doing it

Dual role of port 0

As shown in Figure 4-1, port O is also designated as ADC - AD7, allowing
it to be used for both address and data. When connecting an 8051/31 to an exter-
nal memory, port 0 provides both address and data. The 8051 multiplexes address
and data through port 0 to save pins. ALE indicates if PO has address or data.
When ALE = 0, it provides data DO - D7, but when ALE = 1 it has address AO -
A’l. Therefore, ALE is used for demuliplexing address and data with the help of a
7418373 latch, as we will see in Chapter 14.

Port 1

Port 1 occupies a total of 8 pins (pins 1 through 8). It can be used as input
or output. In contrast to port 0, this port does not need any pull-up resistors since
it already has pull-up resistors internally. Upon reset, port 1 is configured as an
output port. For example, the following code will continuously send out to port 1
the alternating values S5H and AAH.

MOV A, #55H
BACK: MOV P1,A

ACALL DELAY

crL A

SJMP BACK

88

Port 1 as input

To make port | an input port, it must programmed as such by writing 1 to
all its bits. The reason for this is discussed in Appendix C.2. In the foliowing code,
port 1 is configured first as an input port by writing Is to it, then data is received
from that port and saved in R7, R6, and R5.

MOV A, #0FFH ;A=FF hex

MOV Pl,A :make P1 an input port
;by writing all 1ls to it

MOV A,P1 ;get data from Pl

MOV R7,A ;save it in reg R7

ACALL DEALY ;wait

MOV A,P1l ;get another data from Pl

MOV R6,A ;save it in reg R6

ACALL DELAY :wait

MOV A,Pl ;get another data from Pl

MOV R5,A ;save it in reg RS

Port 2

Port 2 occupies a total of 8 pins (pins 21 through 28). It can be used as
input or output. Just like P1, port 9 does not need any pull-up resistors since it
already has pull-up resistors internally. Upon reset, port 2 is configured as an out-
put port. For example, the following code will send out continuously to port Z the
alternating values 55H and AAH. That is, all the bits of P2 toggle continuously.

MOV A, #55H
BACK: MOV P2,A

_ACALL DELAY

CPL A

SJMP BACK

Port 2 as input

To make port 2 an input, it must programmed as such by writing 1 to all its
bits. In the following code, port 2 is configured first as an input port by writing 1s
to it. Then data is received from that port and is sent to P1 continuously.

MOV A, #0FFH ;A=FF hex _ S
MOV P2,A ;make P2 an input port by

swriting all 1s to it
BACK: MOV A, P2 ;get data from P2
MOV P1,A ;send it to Port 1
SJMP BACK ; keep doing that

Du=l roie of port 2

In systems based on the 8751, 89C51, and DS5000, P2 is used as simple
1/O. However, in 8031-based systems, porl 2 must be used along with PO to pro-

CHAPTER 4: /O PORT PROGRAMMING 89

vide the 16-bit address for the external memory. As shown in Figure 4-1, Port 2is

also designated as A8 - A5, indicating its dual function. Since an 8031 is capable
of accessing 64K bytes of external memory, it necds a path for the 16 bits of the
address. While PO provides the lower 8 bits via A0 - A7, it is the job of P2 to pro-
vide bits A8 - A15 of the address. In other words, when the 803! is connected to
external memory, P2 is used for the upper 8 bits of the 16-bit address, and it can-
not be used for 1/Q. This is discussed in deiail in Chapter 14.

From the discussion so far, we conclude that in systems based on 8751,
89C51, or DS5000 microcontrollers, we have three ports, PO, P1, and P2, for }/O
operations. This should be enough for most microcontroller applications. That
lcaves port 3 for interrupts as well as other signals, as we will see next.

Port 3 " Table 4-2: Port 3 Alternate
Functions

Port 3 occupies a total of 3 pins, pins 10
through 17. 1t can be used as input or output. P3 P3 Bit __ Function Pin
does not need any pull-up resistors, the same as
P1 and P2 did not. Although port 3 is configured P3.0 RxD 10

as an output port upon reset, this is not the way P3.1 B_D_ Il
it is most commonly used. Port 3 has the addi- P3.2 INTO 12
tional function of providing some extremely F3.3 INTI 13
important signals such as interrupts. Table 4-2 P3.4 T0 14
provides these alternate functions of P3. This P3.5 Tl 15
information applies to both 8051 and 8031 P3.6 _V!R 16
chips. P3.7 RD 17

P3.0 and P3.1 are used for the RxD and
TxD serial communicatiois signals. See Chapter
10 to see how they are connected. Bits P3.2 and P3.3 are set aside for external
interrupts, and are discussed in Chapter 11. Bits P3.4 and P3.5 are used for timers
0 and 1, and are discussed in Chapter 9 where timers are discussed. Finally, P3.6
and P3.7 are used to provide the WR and RD signals of external memories con-
nected in 8031-based systems. Chapter 14 discusses how they are used in 8031-
based systems. In systems based on the 8751, 89C51, or DS5000, pins 3.6 and 3.7
are used for I/O while the rest of the pins in Port 3 are normally used in the alter-
nate function role.

Review Questions

I. A given 8051 chip has a speed of 16 MHz. What is the range of frequency that
can be applied to the XTAL1 and XTAL2 pins?

2. A 16-MHz 8051 system has a machine cycle of .

3. Which pin is used to inform the 8051 that the on-chip ROM contains the pro-
gram?

1. There are total of ports in the 8051 and each has bits.

5. True or false. All of the 8051 ports can be used for both input and output.
- Upon power up, the program counter (PC) h- a value of . :
7. Upon power up, the 8051 fetches the first opcode from ROM address location

8. Which of the 8051 ports need pull-up resistors to function as an I/O poit?

90

SECTION 4.2: /0 PROGRAMMING; BIT MANIPULATION

In this section we further examine 8051 1/0 instructions. We pay special
atteniiun to I/0 bit manipulation since it is a powerful and widely used 8051 fea-
ture. A detailed discussion of 1/0 ports of the 8051 is given in Appendix C.2.

Different ways of accessing the entire 8 bits

In the following code, as in many previous [/0 examples, the entire 8 bits
of Port 1 are accessed.

BACK: MOV A, #55H
MOV P1,A
ACALL DELAY
MOV A, #0AAH
MOV P1,A
ACALL DELAY
SJMP BACK

The above code toggles every bit of P1 continuously. We have seen a vari-
ation of the above program before. Now we can rewrite the above code in a more

efficient manner by accessing the port directly without going through the accumu-
iator. This is shown next.

BACK: MOV P1, #55H
ACALL DELAY
MOV P1, #0AAH
ACALL DELAY
SIJMP BACK

We can write another variation of the above code by using a technique
called read-modifv-write. This is shown next.

Read-modify-write feature

The ports in the 8051 can be accessed by the read-modify-write technique.

This feature saves many lines of code by combining in a single instruction aii three

actions of {1) reading the port, (2) modifying it, and (3) writing to the port. The

followmg code first places 01010101 (binary) into port 1. Next, the instruction

“XLR P1, #0FFH” performs an XOR logic operation on P | with 1111 1111 (bina-
ry), and then writes the result back into P1.

MOV P1l,#55H ;P1=010101C1

AGAIN: XLR P1l,#0FFH ;EX-OR P1 with 1111 1111
ACALL DELAY
53JMP AGAIN

Notice that the XOR of 55H and FFH gives AAH. Likewise, ihe XOR of
AAH and FFH gives 55H. Logic instructions are discussed in Chapter 7.

CHAPTER 4: /O PORT PROGRAMMING ,- 91

Single-bit addressability of ports

There are times that we necd to access only 1 or 2 biis of the port instead
of the entire 8 bits. A powerful feature of 8051 1/O ports is their capability to
access individual bits of the port without altering the rest of the bits in that port.
For example, the following code toggles the bit Pl .2 continuously.

BACK: CPL P1.2 ;complement P1.2 only
ACALL- DELAY) :
SJMP BACK

.another variation of the above program follows

AGAIN: SETB P1.2 ;change only Pl.2=high
ACALL DELAY
CLR P1.2 ;change only Pl.2=low
ACALL DELAY ‘
SJMP AGAIN

Notice that P1.2 is the third bit Table 4-3: Single-Bit Addressability of Forts

of P1, since the first bit is P1.0, the sec- PO P1 P2 P3 Port Bit
ond bit is P1.1, and so on. Table 4-3 P0.0 P1.0 P2.0 P3.0 DO
shows the bits of 8051 I/O ports. See P0.l - P1.1 P2.1 P3.1 Dl
Example 4-2 for an example of bit P02 P12 P22 P32 D2
manipulation of /O bits. Notice in P0.3 P13 P23 P33 D3
Example 4-2 that unused portions of P0.4 P14 P24 P34 D4 .
Ports 1 and 2 are undisturbed. This sin- P0.5 P1.5 P25 P35 DS
gle-bit addressability of I/O portsisone P0.6 P1.6 P2.6 P3.6 D6

of most powerful features of the 8051 P0.7 P17 P27 P37 D7
microcontroller.

Example 4-2

Write a program to perform the following.

(a) Keep monitoring the P1.2 bit until it becomes high,

(b) When P1.2 becomes high, write value 45H to port 0, and
(c) Send a high-to-low (H-to-L) pulse to P2.3.

Solution:

SETB P1l.2 ;make P1.2 an input

MOV A, #45H ; A=45H) o
AGAIN: JNB P1.2,AGAIN ;get out when Pl.2=1

MOV PO,A ;issue A to PO

SETB P2.3 ;make P2.3 high

CLR P2.3 :make P2.3 low for H-to-L

In this program, instruction “JNB P1.2, AGAIN” (IND means jump if no bit)
stays in the loop as long as P1.2 is low. When P1 .2 becomes high, it gets out of the loop,
writes the value 45H to port 0, and creates a H-to-L pulse by the sequence of instruc--

i
£

Review Questions

1. Upon reset, the 8051 ports are configured as
(a) input (b) output (¢) both input and output.

2. True or false. The instruction “SETB p2 .17 makes pin P2.1 high while leav-
ing other bits of P2 unchanged. v

3. Why do we use S5H and AAH to test the bits of the port?

4. s the following a valid instruction: “MOV p1, #99H"? Explain your answer.

5. Using the instruction “JNB p2.5, HERE” assumes that bit P2.5 is an
(input, output).

SUMMARY

This chapter began by describing the function of each pin of the 8051. The
four ports of the 8051, PO, P1, P2, and P3, each use 8 pins, making them 8-bit
ports. These ports can be used for input or output. Port 0 can be used for either
address or data. Port 3 can be used to provide interrupt and serial communication
signals. Then 1/O instructions of the 8051 were explained, ané numerous exam-
ples were given.

PROBLEMS

SECTION 4.1: PIN DESCRIPTION OF THE 8051

1. The 8051 DIP package isa ___-pin package.

2. Which pins are assigned to V¢c and GND?

3. In the 8051, how many pins are designated as 1/0 port pins?

4. The crystal osciliator is connected to pins and

5. If an 8051 is rated as 25 MHz, what is the maximum frequency that can be
connected to it?

6. Indicate the pin number assigned to RST in the DIP package.

7. RSTisan (input, output) pin.

8. The RST pin is normally (low, high) and needs a (low, high)

signal to be activated.
9. What are the contents of ihe PC (program counter) upon RESET of the 80517
10. What are the contents of the SP register upon RESET of the 80517
11. What are the contents of the A register upon RESET of the 80517
12. Find the machine cycle for the following crystal frequencies connected to X1

and X2.
(a) 12 MHz (b) 20 MHz (c) 25 MHz (d) 30 MHz

13. EA stands for andisan___~ (input, ouiput) pin.

14. For 8051 family members with on-chip ROM stch as the 8751 and the 89C51,
pin EA is connectedto (Vo GND).

15. PSEN is an (input, output) pin.

16. ALE is an (input, output) pin.

17. ALE is used mainly in systems based on the (8051, 303 1).

18. How many pins'aye designated as PO and what are those in the DIP package?

CHAPTER 4: /O PORT PROGRAMMING 93

19.
20.
21.
22.
23.
24.

29.

_30

iHow many pins are designated as P1 and what are those in the DIP package?
How many pins are designated as P? and what are thosc in the DIP package?
How many pins are designated as P3 and what are those in the DIP package?
Upon RESET, all the bits of ports are configured as (input, output).

In the 8051, which port needs a pull-up resistor Lo be used as 1/0?

Which port of the 8051 does not have any alternate function and can be used
solely for [/O? |

. Write a program to get 8-bit data from P1 and send it to ports PO, P2, and P3.
. Write a nrogram to get an 8-bit data from P2 and send it to ports PO and P1.

. In P3, which pins are for RxD and TxD?

. At what memory location does the 8051 wake up upon RESET? What is the

implication of that?

Write a program to toggle all the bits of P1 and P’> continuously

(a) using AAH and 55H (b) using the CPL instruction.

What is the address of the last location of on-chip ROM for the 87517

SECTION 4.2: /0 PROGRAMMING; BIT MANIPULATION

31.
32.
33.
34.
35.

Which ports of the 8051 are bit-addressable?

What is the advantage of bit-addressability for 8051 ports?

When P1 is accessed as a single bit port, it is designated as

Is the instruction "CPL P1" a valid instruction?

Write a program to toggle P1.2 and P1.5 cont.nuously without disturbing the
rest of the bits.

. Write a program to toggle P1.3, P1.7, and P2.5 continuously without disturb-

ing the rest of the bits.

. Write a program to monitor bit P1.3. When it is high, send 55H to P2.
. Write a program to monitor the P2.7 bit. When it is low, send 55H and AAH

to PO continuously.

. Write a program to monitor the P2.0 bit. When it is high, send 99H to P1.
. Write a program to monitor the P1.5 bit. When it is high, make a low-to-high-

to-low pulse on P1.3.

ANSWERS TO REVIEW QUESTIONS

SECTION 4.1: PIN DESCRIPTION OF THE 89051
. From 0 to 16 MHz, but no more than 16 MHz.

!

2. 1/12th of 16 MHz is 1.33 MHz. and the machine cycle is = 0.75 us - -
3.EA 4.4, 8 5. True

6. PC =0000 7.0000 8. Port 0

~

SECTION 4.2: /O PROGRAMMING; BIT MANIPULATION

1. (b) 2. True 3. They are the complement of each other.
4. Yes. This is called immediate addressing mode (discussed in Chapter 5).
5. input

94

	ch0
	ch1
	ch2
	ch3
	ch4

