
SAMPLE PROGRAM TO DEMONSTRATE fork () SYSTEM CALL
OPERATION

#include <stdio.h>
#include <sys/types.h>

#define MAX_COUNT 200

void ChildProcess(void); /* child process prototype */
void ParentProcess(void); /* parent process prototype */

void main(void)
{
 pid_t pid;

 pid = fork();
 if (pid == 0)
 ChildProcess();
 else
 ParentProcess();
}

void ChildProcess(void)
{
 int i;

 for (i = 1; i <= MAX_COUNT; i++)
 printf(" This line is from child, value = %d\n", i);
 printf(" *** Child process is done ***\n");
}

void ParentProcess(void)
{
 int i;

 for (i = 1; i <= MAX_COUNT; i++)
 printf("This line is from parent, value = %d\n", i);
 printf("*** Parent is done ***\n");
}

In this program, both processes print lines that indicate
 (1) whether the line is printed by the child or by the parent process, and
 (2) the value of variable i.

When the main program executes fork(), an identical copy of its address space, including
the program and all data, is created. System call fork() returns the child process ID to the
parent and returns 0 to the child process. The following figure shows that in both address
spaces there is a variable pid. The one in the parent receives the child's process ID 3456
and the one in the child receives 0.

Now both programs (i.e., the parent and child) will execute independent of each other
starting at the next statement:

In the parent, since pid is non-zero, it calls function ParentProcess(). On the other hand,
the child has a zero pid and calls ChildProcess() as shown below:

Due to the fact that the CPU scheduler will assign a time quantum to each process, the
parent or the child process will run for some time before the control is switched to the
other and the running process will print some lines before you can see any line printed by
the other process. Therefore, the value of MAX_COUNT should be large enough so that
both processes will run for at least two or more time quanta. If the value of
MAX_COUNT is so small that a process can finish in one time quantum, you will see
two groups of lines, each of which contains all lines printed by the same process.

