SSN COLLEGE OF ENGINEERING, KALAVAKKAM
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
Operating Systems Lab — CS2257

Lab Exercisel STUDY OF SYSTEM CALLS

A system call, sometimes referred to akeanel call, is a made via a software interrupt by
anactive process for aservice performed by the kernel.

PROCESSMANAGEMENT SYSTEM CALLS

1. System Call : fork()
Description:

System callfork() is used to create processes. It takes no arguraedtseturns a
process ID. The purpose tork() is to create aew process, which becomes tbild
process of the caller. After a new child processeatedpoth processes will execute the
next instruction following thdork() system call. Therefore, we have to distinguish the
parent from the child. This can be done by testimgreturned value d¢brk():

- If fork() returns a negative value, the creation of a clpldcess was
unsuccessful.
« fork() returns a zero to the newly created child process.

fork() returns a positive value, tipgocess ID of the child process, to the parent. The
returned process ID is of tyed_t defined insys/types.h. Normally, the process ID is
an integer.

2. System Call : exec()

#i ncl ude <uni std. h>

i nt execl (const char *path, const char *arg, ...);
i nt execl p(const char *file, const char *arg, ...);
i nt execle(const char *path, const char *arg , .., char

* const envp[]);
i nt execv(const char *path, char *const argv[]);
i nt execvp(const char *file, char *const argv[]);

Description:

The exec family of functions replaces the currerdcpss image with a new process
image. Commonly a process generates a child prdszesaise it would like to transform
the child process by changing the program code cthill process is executing. If
successful, thexec system calls do not return to the invoking prograsnthe calling
image is lost.The exec() functions replace a curg@mocess with another created
according to the arguments given.

The naming convention: exec*

« 'I'indicates a list arrangement (a series of taulhinated arguments)

« 'V'indicate the array or vector arrangement (ke argv structure).

« 'e' indicates the programmer will construct (in H#veay/vector format) and pass
their own environment variable list

« 'p'indicates the current PATH string should bedusben the system searches for
executable files.

+ In the four system calls where the PATH stringa$ msed (execl, execv, execle,
and execve) the path to the program to be execented be fully specified.

Example:

execl ("/bin/date","",NULL); // since the second argunent is the
program narne,

/1 it may be nul
execl ("/bin/date", "date", NULL);

execl p("date","date", NULL); //uses the PATH to find date, try:
%echo $PATH

3 & 4. System Call : getpid() , getppid()

#i ncl ude <sys/types. h>
#i ncl ude <uni std. h>

pid_t getpid(void);
pid_t getppid(void);

getpid() returns the process id of the current process.pfbeess ID is a unique positive
integer identification number given to the procesen it begins executing.

getppid() returns the process id of the parent of the ctipencess. The parent process

forked the current child process.

5. System Call : exit()

void exit(int status);

Description:

The C library functionexit () calls the kernel system calexit () internally.
The kernel system callexi t () will cause the kernel to close descriptors, fresmory,
and perform the kernel terminating process cleantbp C library functiorexi t () call
will flush I/O buffers and perform aditional cleap- before calling exi t () internally.
The functionexi t (st at us) causes the executable to return "status" as tbhenreode
for mai n() . Whenexi t (st at us) is called by a child process, it allows the papotess
to examine the terminating status of the childt (ierminates first). Without this call (or a
call frommain() toreturn()) and specifying the status argument, the procéésot
return a value.

6. System Call : wait()
#i ncl ude <sys/types. h>
#i ncl ude <sys/wait.h>

pidt wait(int *status);

Description:

The call wait() can be used to determine when &l gfrocess has completed it's
job and finished. We can arrange for the parentgs® to wait untill the child finishes
before continuing by calling wait(). wait() causegarent process to pause untill one of
the child processes dies or is stopped. The calime the PID of the child process for
which status information is available. This willuadly be a child process which has
terminated.

7. System Call : deep ()

#i ncl ude <uni std. h>
unsi gned i nt sleep(unsigned int seconds);

Description:
sleep() makes the current process sleep wgatibnds seconds have elapsed
8. System Call : signal ()

#include <signal.h>

A signal is a limited form of inter-process communication

Signals are software generated interrupts thasemeto a process when a event happens
» accept the default signal action (usually death)

signal(SIGINT, SIG_DFL);

* ignore the signal
signal(SIGINT, SIG_IGN);

» install a custom signal handling function
signal(SIGINT, ourfunction);

9. System Call : kill ()

int kill(pid_t pid, int sig)
Description:

System calkill() takes two arguments. The firgid, is the process ID you want to
send a signal to, and the secosid, is the signal you want to send. Therefore, you
have to find some way to know the process ID ofatier party.

« If the call tokill() is successful, it returns O; otherwise, the reddrwvalue is
negative.

« Because of this capabilitykill() can also be considered as a communication
mechanism among processes .

« Thepid argument can also be zero or negative to inditetethe signal should
be sent to a group of processes.

