111

Maximum: Elow Problem
14
Problem off maximizing the flow ofia material thrrough a e

transportation network (e.g., pipeline system, communications
OF transportation networks)

Formally represented by a connected weighted digraph with n
vertices numbered from 1 to n with the following properties:

contains exactly one vertex with no entering edges, called
the source (numbered 1)

contains exactly one vertex with no leaving edges, called
the sink (numiered n)

Nas PosItiVe INtegerWeIght u; on each directed edge (i),
called the edge capacity, Indicating the Uupper bound on
the amount of the material that can be sent from: i to |
through this edge

i

i

1id

Example ofi Elow Network

Sink

Definition ofia Klow
1.
Adlowiis an assignment ofireal nuUMmDbErs X;; 10 edges (1;)) of a

given network that satisty. the following:

flow-conservation requirements

Iihe total'amount of:material entering an intermediate
Vertex must be equal to the total'amount of the material
leaving the vertex

Z in = Z Xij for | :2,3,..., n-1
ek () eE

capacity constraints
0= % S u;; forevery edge (1)) €

i

i

111

111

Flow value and Maximum FElow Problem
.

Since no material can be lost or added to by going through
Intermediate vertices of the network, the total amount of the
material leaving the source must end up at the sink:

2 X = X Xin

R E = = (:n)e E

Ithe value ofithe flow 1S defined as the total outfiow frrom the
source (= the total inflow into the sink).

Tthe maximum flow problem is to find a flow of the largest
valtie (maximum flow) for a given network.

Maximum-Elow Problem: as [LP problem
r'rr

rrau
Maximize V. = Z X
= (1)) e E
subject to

%% = X % = U oR =23, 0.n=1
fe (i)=& ()= E

0= X s U forevery edge (1)) € B

i

i

111

i

i

Augmenting Path (Ford-Fulkerson) Method

1id

114

Startwith the zeroflow (;; = Orfor every edge)

On each iteration, try to find a flow-augmenting pathn from
Source to sink; Which a path along which 'some additional
flow can e sent

If:a flow-augmenting pathiis found, adjust the flow along
the edges ofithis path to get a flow of increased value and
try again

Ifino flow-atigmenting path Is found, the current flow IS
maximum

i

i

idd

Forp-FuLkerson-MEeETHODR(G, 5. 1)
initialize flow f to 0
while there exists an augmenting path p in the residual network Gy
augment flow f along p

return

In order to implement and analyze the Ford-Fulkerson method, we need to intro-
duce several additional concepts.

i

i

iid

Residual flow

crlu,v) =

clu.v)

celuv) = ¢ flv.ou)

clu,v) — filu,v).

— flu,v) if(u.v) € E,

if(v.u) e E .

otherwise .

i

i

iid

Augmenting path

Given a flow network G = (V. E) and a flow f. an augmenting path p is a
simple path from s to ¢ in the residual network Gy. By the definition of the resid-

ual network, we may increase the flow on an edge (u.v) of an augmenting path
by up to cr (i, v) without violating the capacity constraint on whichever of (u. v)
and (v, u) is in the original flow network .

Example 1

Augmenting path:
1-2 -3 —6

i

i

i

Example 1 (cont.)

Augmenting path:
1 -4 532 -5 —6

Example 1 (maximum flow)

1/1

max flow value = 3

i

i

Finding a flow-augmenting path
0 0 gp ”’

To find a flow-augmenting pathfor a flow X; CONSIGer patns from
source to sink in the underlying undirected graph InWhich any
WO consecutive VErtices I,j are either:

connected by a directed edge (1:tor) withi some positive
unused capacity r; = U = X

Known: as forward edge (—)
O)
connected by a directed edge (Jto) withrpositive flow X
Known as backwardedge (<)

Iffa flow-augmenting pathis found, the current flow can be
INCreased by r UMt Y INCreasing X;; Y r-on each forward edge
andldecreasing x;; By r:on eact packward edge, where

. =min {rij on all forward edges, x;; on alllbackward edgesy

1id

i

i

1id

Finding a flow-augmenting path (cont.)
1.
Assuming the ecdge capacities are INtegers, r IS a Positive
INteger

On each iteration, the flow value increases by at least 1

Maxaimum: valte I1s bounded by the sum ofithe capacities of
the edges leaving the source; Nence the augmenting-patn
method has to stop after a finite number: of: Iterations

The final flow is always maximum, its value doesn’t depend
0N a Sequence ofraugmenting paths used

Performance degeneration ofi the method
rrs

rrau
T he augmenting-path method doesn’t prescribe a specific

Way. for generating flow-augmenting paths

Selecting a bad sequence ofraugmenting paths could impact
the method’s efficiency.

Example 2 @
o/U w
0/1 U = large positive integer
0/U y 0/U
(©)
<~
<~
- m

Example 2 (cont.)

o

o/U

U/U

U/U

i

i

11

O

4
Requires 2U iterations to reach

maximum flow of value 2U

(2)
WAU 1/U WAU
1/1

V“*Q\

i

i

1id

Shortest-Augmenting-Path Algorithm
.

(Generate augmenting path with the least numier: of: edges by
BES as follows.

Starting at the source, perform BES traversall by marking new
(unlalbeled) vertices wiath two labels:

first label'— indicates the amount of:addrtional flow that
can be brought firom the source to the vertex being labeled

second label'= indicates the vertex from which the vertex
being labeled was reached, with “+> or “—” added to the
second label to indicate whether: the vertex was reached via

a forward or backward edge

i

i

1id

\/ertex labeling ppp

1'he source Is always labeled with eo,-

All other: vertices are labeled as follows:

If:tinlabeled vertex jiis connected to the front Vertex I of
the traversal queue by a directed edge frrom i'to jwath
positive unused capacity I, = Uj; =X (Torward edge);
vertex Jiis labeled wath 517 where | = mingl;;

If:tinlabeled vertex jiis connected to the front Vertex I of
the traversal queue by a directed edge frrom j to with
positive Tlow X (backward edge), Vertex jis labeled |5
where |; = mingl, x;; ¢

i

i

1id

\ertex labeling (cont.)
1.
Ifithe sink ends tp being labeled, the current flow can be
augmented by the amount indicated by the sink’s first label

Iihe augmentation ofithe current flow 1s performed along the
augmenting path traced by following the vertex second labels
from sink to source; the current flow quantities are increased
on the forward edges and decreased on the backward edges
ofi this path

Ifithe sink remains unlabeled after the traversal guete
pecomes empty, the algorithm returns the current flow as
maximum and stops

Examples Shortest-Augmenting-RPatn Algorithm
rrr

0/3 0/1
Queue: 124356
T
0/3 0/1
3,1*
- Augment the flow by 2 (the sink’s first
<: label) along the path 1—2—3—6

Example (cont.)

1,2*

0/3 0/1
Queue: 143256
TTrT?
0/3 0/1
3,1*
_— Augment the flow by 1 (the sink’s first

1 - label) along the path 1 -4—3—2—-5—6
- ‘

Example (cont.)

1/3 1/1

Queue: 14
T

1/3 1/1

2,1*

No augmenting path (the sink is unlabeled)
the current flow is maximum

i

i

11

i

i

Definition of a Cut
1L
[et X be a set ofivertices in a network that cludes its source but
does not include its sink, and et X, the complement of X, be the
rest ofithe vertices including the sink. Tthe cut induced by this

partition ofithe Vertices Is the set ofiall'the edges with a tail in X
and a head in X.

Capacity of:a cut is defined as the sum oficapacities ofithe edges
that compose the cut.

We’ll denote a cut and its capacity by C(XS() and c(XS()
Note that if-all the edges ofia cut were deleted from the
network;, there would be no directed path firom Source to sink

Minimum cut IS a cut ofithe smallest capacity in a given
network

1id

i

i

Examples ofi network cuts
rrs

[f X = {1} and X = {2,3,4,5,6}, COXX) ={(1,2), (1,4)}, c=5
If X ={1,2,3,4,5} and X = {6}, C(X,X) = {(3,6); (5:6)}, c=6
£ X = {1,2,4% and X ={3,5,6}, C(X.X) = {(2,3), (2,5), (4,3)}, c=9

i

114

Max-Flow Min-Cut T:heorem
I

The value of maximum flow in a network is equal to the
capacity of Its minimum cut

['he shortest augmenting path algorithm yields both a
maximum flow and a minimum cut:

maximum How is the final flow produced by the algorithm

minimum cut 1s formed by, all'the edges from the labeled
vertices to unlabeled vertices on the last iteration of the
algorithm

all'the edges from the labeled to uniabeled vertices are full;
I.€., thelr flow amounts are equal to the edge capacities,
while all'the edges firrom the unlabeled to labeled vertices; if
any, have zero flow amounts on them

i

i

idd

Theorem 26.6 (Max-flow min-cut theorem)
If f is a flow in a flow network G = (V. E) with source s and sink . then the
following conditions are equivalent:

f is a maximum flow in G.

. The residual network G contains no augmenting paths.
. |f]=¢(S.T) for some cut (S.T) of G.

Shortest-augmenting-path algorithm
Input: A network with single source 1, single sink n, and
positive integer capacities u;; on its edges (¢, 5)
Output: A maximum flow z
assign x;; = 0 to every edge (7,7) in the network
label the source with oo, — and add the source to the empty queue
while not Empty(Q) do
i — Front(Q); Dequeue(Q)
for every edge from i to j do //forward edges
if 7 is unlabeled
Tij = Wiy = Tij
if 7y > 0
l; — min{l;,r;;}; label j with {;, 4%
Enqueue(Q, 7)
for every edge from j to i do //backward edges
if j is unlabeled
if T > 0
l; < min{l;,z;;}; label j with [;, 2~
Enqueue(Q, 7)
if the sink has been labeled
//augment along the augmenting path found
j «—n //start at the sink and move backwards using second labels
while j # 1 //the source hasn’'t been reached
if the second label of vertex j is i+
Tijj Tij + lv,,,
else //the second label of vertex j is 4~

le — 'LJI - z'n.

Jei
erase all vertex labels except the ones of the source
reinitialize Q with the source
return = //the current flow is maximum

i

i

1id

Time Efficiency
I11,
[ihe numper: ofraugmenting paths needed by, the shortest-

augmenting-path algorithm never exceeds nmj/2, Where n
and m are the number of: vertices and edges, respectively

Since the time required to find shortest aligmenting path by
preadth-first search is i O(n+m)=0(m) for NEtWOrks
represented by thelr adjacency. lists, the time efficiency of
the shortest-atigmenting-path algorithm is in O(nm?) for.
this representation

More efficient algorithms have been found that can runin
close to O(nm) time, but these algorithms don’t fall into the
Iiterative-improvement paradigm

i

i

Bipartite Graphs
- " r'rr

rrau
Bipartite graph: a graph Whose VEFLICeS can e partitioned into
two disjoint sets '\ and U, not necessarily ofithe same Size, so
that every edge connects a vertex in'\/ to a vertex iniy

A graphis bipartite iffand only 1 1t does not have a cycle ofian
odd length

iid

i

i

iid

Bipartite Graphs (cont.)

r'rr

A bipartite graph Is 2-colorable: the vertices can be colored
IN tWOo ColOKS SO that every edge has Its VEertices colorea
differently

Y

v

i

i

Matching in a Graph
Iy

rrau

A matching in'a graph Is a sulbset ofi its edges with the property
that no two edges share a Vertex

a matching
in this graph
M ={(4.8), (5,9)}

A maximum: (or maximum cardinality) matching 1s a matching
with the largest number: ofiedges

always exists

not always unigue

iid

|
|

Free \/ertices and Maximum Matching'”

YU oa
A matched

vertex

A free
vertex

For a given matching M, a vertex is called free (or unmatched) if
IC 1S NOt an endpoint ofrany edge i M otherwise, a Vertex is said
1o be matched

o [frevery vertex 1S matched, then M IS a maximum matching
o |f there are unmatched or: free vertices, then M may be able to be improved

my© \VVE Can immediately increase a matching by adding an edge connecting two
myy freevertices (e.0., (1,6) above)

- m

Augmenting Paths and Atgmentation ’rt

v v
An augmenting path for a matching M is a path from a free vertex
In'\/ to a free vertex in WU whose edges alternate between ecges
not 1in M and edges in M
Tihe length of:an'augmenting path is always odd

Adding to M the odd numibered path edges and deleting from it the even
numbered pathedges increases the matching size by 1 (augmentation)

One-edge path between two free Vertices IS special case of augmenting path

Augmenting Paths (another example)

Augmentation along
3,8,4,9,5,10

i

i

» Matching on the right Is maximum (perfect matching)

o Theorem A matching Mis maximumiifiand only It there exists
No augmenting path with respect to M

iid

Augmenting Path Method (template)
1.
Start with some mitial matching
€.0., the empty. set

Find anraugmenting path and atugment the current
matching along that path
€.0., using breadth-first search like method

\Alhen no augmenting path can e found, terminate anad
return the last matching, Which 1s maximum

111

i

i

1id

BES-based Augmenting Path Algorlthnh’

Initialize queue @ with all free vertices in one of the sets (say V)

Whitle @'1s not empty, delete front vertex w and label every
unlabeled vertex uradjacent tow as follows:

Case 1 (W 1s m\/)
ITuris free, augment the matching along the pathrending at u
Py moving backwards until a free vertex in \/ IS reached.
After that, erase all'labels and remnitialize @ with all'the
vertices in \/ that are still free
Ifru1s matched (not wathiw); label uwith W and engueue u

Case 2 (W 1sin U)r Labeliits matching mate v withiw and
engueue Vv

After @ becomes empty, return the last matching, Which 1s
maximum

Example (revisited)

Initial Graph Resulting Graph

Queue: 123

Queue: 123 Augment
g
t from 6

Each vertex is labeled with the vertex it was reached from. Queue deletions are
indicated by arrows. The free vertex found in U is shaded and labeled for clarity;
the new matching obtained by the augmentation is shown on the next slide.

i

i

1

Example (cont.)

Initial Graph

1
Queue:236814 Augment
PHtts from 7

Example (cont.)

Initial Graph

Example: maximum: matching found

maximum
matching

This matching IS maximum SINce there are no remaining
free vertices in \/ (the queue Is empty)

Note that this matching differs firom the maximum
matching found earlier

111

Maximum-matching algorithm for bipartite graphs
Input: A bipartite graph G = (V. U, E)
Output: A maximum-cardinality matching M in the input graph
initialize set M of edges with some valid matching (e.g.. the empty set)
initialize queue Q with all the free vertices in V' (in any order)
while not Empiy(Q) do
w «— Front(Q): Degueue(Q)
ifweV
for every vertex u adjacent to w do
if u is free
//augment
M — MU (w,u)
ve—w
while v is labeled do
u — vertex indicated by v's label: M — M — (v,u)
v «— vertex indicated by u's label: M — M U (v, u)
remove all vertex labels
reinitialize Q with all free vertices in V
break //exit the for loop
else //u is matched
if (w,u) € M and u is unlabeled
label u with w
FEnqueue(Q.u)
else //w € U (and matched)
label the mate v of w with “w)
Enqueue(Q,v)

return M //current matching is maximum

i

i

1id

Notes on Maximum Matching Algorithm

r'rr
rrau
Eachiiteration (except the last) matches tWo firee Vertices (one
each from \/ and U). Tiherefore, the number of: Iterations
cannot exceed | .n/21+ 1, where n is the number: of: vertices in
the graph. The time spent on each iteration Is i O(n+m),

WHEre m IS the numiber: ofiedges in the graph. Hence, the time
efficiency is i O(n(n+m))

this canibe improved to O(sgrt(n)(n+m)) by combining
multiple iterations to maximize the number: ofiedges added to
matching M 1neach search

Finding a maximum matching in an arbitrary graph Isimuch
more difficult; but the problem was solvedin 1965 by Jack
Edmonds

Conversion to Max-Rlow Problem

ok

11 1y 1

Add a source and a sink; direct edges (With unit capacity)

Trom the source to the vertices ofi\/ and from the Vertices
ofi U to the sink

Direct all'edges from \/ to U with unit capacity.

111

Stable Marriage Problem
I,

Thereis aset Y = {my,....m.; of- n menand a set X = {W;,...,\W. } Of
nWomen. Each man has a ranking list ofithe women, and
eachwoman has a ranking list ofithe men (With no ties 1n these
ISLS).

Amarriage mateching Miis a Set ofin pairs (m;, W;).

A pair (m, w) s said to be a blocking pair: for matching Miifiman

m and woman W are not matched in M but prefer each other to
therr mates in M.

A marriage matching Meis called stable ifithere 1s no blocking
pair for it; otherwise, it’s called unstable.

[ihe stable marriage problem Is to find a stable marriage
matching for men’s and women’s given preferences.

i

i

111

Instance ofi the Stable Marriage Probleﬁ’

. . - . Vv u
An instance ofithe stable marriage problem can be specified either by two sets
ofipreference lists or by a ranking matrix, as in the example below.

men’s preferences women’s preferences

lst 2nd 3rd 1st 2nd 3rd
Bob: LLea Ann Sue Ann: Jim Tom Bob
Jim: LLea Sue Ann [Lea: Tom Bob Jim
Jom: Sue llea Ann Sue: Jim Tom Bob

ranking matrix
Ann Lea Sue
Bob 2,3 1,2 33 {(Bob, Ann) (Jim, LLea) (Tom, Sue)} is unstable

Jm 5,1 15 2.1 {(Bob, Ann) (Jim, Sue)' (Tom, L.ea)} is stable
Tom 32 2,1 12

111

Stable Marriage Algorithm (Gale-Shapley) I

Step 0 Start withrall'the meniand women being free

Step L While there are frree men, arbitrarily select one of: them
and do the following:
Proposal’ The selected free man m proposes tow, the
next woman on his preference list

Response Ifw s free, she accepts the proposal to e
matched with m. Ifishe IS not free, she compares m Wwith
her current mate. Ifshe prefers m to him, she accepts
m’s proposal, making her former mate free; otherwise,
she simply: rejects m’s proposal, leaving m free

Step 2 Return the set ofin matched pairs

i

i

111

Example

Free men:
Bob, Jim, Tom

Free men:
Jim, Tom

i

i

11

Ann | Lea [Sue
Bob | 23 | 1,2 [33
Jim [3,1 1,8 2,1
Jom | 32 | 21 | 172

Ann | Lea [Sue
Bob | 23 | 1,2 [33
Jm | 31 | 13 | 21
Tom | 3,2 | 2,1 1,2

Irr

rrau

Bob proposed to LLea
[_ea accepted

Jim proposed to lLea
[_ea rejected

Example (cont.)

Vv a
Ann | Lea | Sue
Bob | 2,3 1,2 3,3 :
Eree men: Jim proposed to Sue
Jim, Tom Jim 3,1 1.3 2,1 Sue accepted
Jom | 3,2 2,1 1,2
Ann | LLea | Sue
Bob | 23 [1,2 | 3.3
Free men: Jlom proposed to Sue
Jom Jm | 3.1 1.3 2.1 SUe rejected
Tom | S,2 2,1 | 1.2

Irr

111

Example (cont.) ’P

rrau

Ann | LLea | Sue

Bob | 2,3 1,2 3,9
: ’ ’ : Tom proposed to l-ea

FEree men:
Tom Jim | 3.1 1.3 2.1 [ea replaced Bob
wiath Tom
Jom | 3,2 2,1 1,2
Ann | LLea | Sue

Bob [23 | 12 | 33
Free men: Bob proposed to/Ann
Bob Jm | 31 | 13 | 2.1 Ann accepted

Jom | 3,2 2,1 1,2

111

i

i

1id

Analysis of: the Gale-Shapley Algorithm
1.
The algorithm terminates after no:more than n? iterations with
a stable marriage output

1the stable matching produced by the algorithm s alway/s
man-optimal: each man gets the highest rank woman on s list
under any stable marriage. ©One can obtain the woman-
optimal matching by making Women propose to men

A man (Woman) optimal matching Is unique for a given set of
participant preferences

he stable marriage problem has practical applications such
as matching medical-school graduates with hospitals for:
resicdency training

