
Maximum Flow Problem

Problem of maximizing the flow of a material through a 
transportation network (e.g., pipeline system, communications 
or transportation networks) 

Formally represented by a connected weighted digraph with n
vertices numbered from 1 to n with the following properties:

• contains exactly one vertex with no entering edges, called 
the source (numbered 1)

• contains exactly one vertex with no leaving edges, called 
the sink (numbered n)

• has positive integer weight uij on each directed edge (i.j), 
called the edge capacity,  indicating the upper bound on 
the amount of the material that can be sent from i to j
through this edge



Example of Flow Network

1 2 3

4

5

6
2 2

3
1

5

3
4

Source

Sink



Definition of a Flow

A flow is an assignment of real numbers xij to edges (i,j) of a 

given network that satisfy the following:

 flow-conservation requirements

The total amount of material entering an intermediate

vertex must be equal to the total amount of the material 

leaving the vertex

 capacity constraints

0 ≤ xij ≤ uij for every edge (i,j)  E

∑ xji =   ∑ xij     for i = 2,3,…, n-1

j: (j,i) є E       j: (i,j) є E



Flow value and Maximum Flow Problem

Since no material can be lost or added to by going through 

intermediate vertices of the network, the total amount of the 

material leaving the source must end up at the sink:

∑ x1j =    ∑ xjn

The value of the flow is defined as the total outflow from the 

source (= the total inflow into the sink).

The maximum flow problem is to find a flow of the largest 

value (maximum flow) for a given network.

j: (1,j) є E          j: (j,n) є E



Maximum-Flow Problem as LP problem

Maximize   v =   ∑ x1j

j: (1,j)  E

subject to

∑ xji - ∑ xij  =  0 for i = 2, 3,…,n-1
j: (j,i)  E     j: (i,j)  E

0 ≤ xij ≤ uij for every edge (i,j)  E



Augmenting Path (Ford-Fulkerson) Method

 Start with the zero flow (xij = 0 for every edge)

 On each iteration, try to find a flow-augmenting path from 

source to sink, which a path along which some additional 

flow can be sent

 If a flow-augmenting path is found, adjust the flow along 

the edges of this path to get a flow of increased value and 

try again

 If no flow-augmenting path is found, the current flow is 

maximum





Residual flow

These reverse edges in the residual network allow an 

algorithm to send back flow it has already sent along an 

edge. Sending flow back along an edge is equivalent

to decreasing the flow on the edge



Augmenting path



Example 1

1 2 3

4

5

6
0/2 0/2

0/3
0/1

0/5

0/3 0/4

Augmenting path:

1→2 →3 →6

xij/uij



1 2 3

4

5

6
2/2 2/2

0/3
0/1

2/5

0/3 0/4

Augmenting path:

1 →4 →3←2 →5 →6

Example 1 (cont.)



1 2 3

4

5

6
2/2 2/2

1/3
1/1

1/5

1/3 1/4

max flow value = 3

Example 1 (maximum flow)



Finding a flow-augmenting path

To find a flow-augmenting path for a flow x, consider paths from 
source to sink in the underlying undirected graph in which any 
two consecutive vertices i,j are either:

• connected by a directed edge (i to j) with some positive 
unused capacity rij = uij – xij

– known as forward edge ( → )

OR

• connected by a directed edge (j to i) with positive flow xji

– known as backward edge ( ← )

If a flow-augmenting path is found, the current flow can be 
increased by r units by increasing xij  by r on each forward edge 
and decreasing xji by r on each backward edge, where

r  = min {rij on all forward edges, xji on all backward edges}



Finding a flow-augmenting path (cont.)

 Assuming the edge capacities are integers, r is a positive 

integer

 On each iteration, the flow value increases by at least 1

 Maximum value is bounded by the sum of the capacities of 

the edges leaving the source; hence the augmenting-path 

method has to stop after a finite number of iterations

 The final flow is always maximum, its value doesn’t depend 

on a sequence of augmenting paths used



Performance degeneration of the method

 The augmenting-path method doesn’t prescribe a specific 

way for generating flow-augmenting paths

 Selecting a bad sequence of augmenting paths could impact 

the method’s efficiency

Example 2

4

2

1 3

0/U 0/U

0/1

0/U0/U

U = large positive integer



Example 2 (cont.)

4

2

1 3

U/U U/U

0/1

U/UU/U

4

2

1 3

0/U 0/U

0/1

0/U0/U
4

2

1 3

1/U 0/U

1/1

1/U0/U

4

2

1 3

1/U 1/U

0/1

1/U1/U

1→2→4→3

1→4←2→3

V=1

V=2

V=2U

● ● ●

Requires 2U iterations to reach 

maximum flow of value 2U



Shortest-Augmenting-Path Algorithm

Generate augmenting path with the least number of edges by 

BFS as follows.

Starting at the source, perform BFS traversal  by marking new 

(unlabeled) vertices with two labels:

• first label – indicates the amount of additional flow that 

can be brought from the source to the vertex being labeled

• second label – indicates the vertex from which the vertex 

being labeled was reached, with “+” or  “–”  added to the 

second label to indicate whether the vertex was reached via 

a forward or backward edge



Vertex labeling 

 The source is always labeled with ∞,-

 All other vertices are labeled as follows:

• If unlabeled vertex j is connected to the front vertex i of 

the traversal queue by a directed edge from i to j with 

positive unused capacity rij = uij –xij (forward edge), 

vertex j is labeled with lj,i
+, where lj = min{li, rij}

• If unlabeled vertex j is connected to the front vertex i of 

the traversal queue by a directed edge from j to i with 

positive flow xji (backward edge), vertex j is labeled lj,i
-, 

where lj = min{li, xji}



Vertex labeling (cont.)

 If the sink ends up being labeled, the current flow can be 
augmented by the amount indicated by the sink’s first label

 The augmentation of the current flow is performed along the 
augmenting path traced by following the vertex second labels 
from sink to source; the current flow quantities are increased 
on the forward edges and decreased on the backward edges 
of this path

 If the sink remains unlabeled after the traversal queue 
becomes empty, the algorithm returns the current flow as 
maximum and stops



Example: Shortest-Augmenting-Path Algorithm

Queue: 1 2 4 3 5 6
↑ ↑ ↑ ↑

Augment the flow by 2 (the sink’s first 

label) along the path 1→2→3→6

1 2 3

4

5

6
0/2 0/2

0/3 0/1

0/5

0/3 0/4

1 2 3

4

5

6
0/2 0/2

0/3 0/1

0/5

0/3 0/4

∞,- 2,1+

2,2+

2,3+

2,2+

3,1+



1 2 3

4

5

6
2/2 2/2

0/3 0/1

2/5

0/3 0/4

1 2 3

4

5

6
2/2 2/2

0/3 0/1

2/5

0/3 0/4

∞,- 1,3-

1,2+

1,5+

1,4+

3,1+

Augment the flow by 1 (the sink’s first 

label) along the path 1→4→3←2→5→6

Queue: 1 4 3 2 5 6
↑ ↑ ↑ ↑ ↑

Example (cont.)



1 2 3

4

5

6
2/2 2/2

1/3 1/1

1/5

1/3 1/4

1 2 3

4

5

6
2/2 2/2

1/3 1/1

1/5

1/3 1/4

∞,-

2,1+

No augmenting path (the sink is unlabeled) 

the current flow is maximum

Queue: 1 4
↑ ↑

Example (cont.)



Definition of a Cut

Let X be a set of vertices in a network that includes its source but 
does not include its sink, and let X, the complement of X, be the 
rest of the vertices including the sink.  The cut induced by this 
partition of the vertices is the set of all the edges with a tail in X 
and a head in X.

Capacity of a cut is defined as the sum of capacities of the edges 
that compose the cut.

 We’ll  denote a cut and its capacity by C(X,X) and c(X,X)

 Note that if all the edges of a cut were deleted from the 

network, there would be no directed path from source to sink

 Minimum cut  is a cut of the smallest capacity in a given 
network



Examples of network cuts

If X = {1} and X = {2,3,4,5,6}, C(X,X) = {(1,2), (1,4)}, c = 5 

If X ={1,2,3,4,5} and X = {6}, C(X,X) = {(3,6), (5,6)},  c = 6 

If X = {1,2,4} and X ={3,5,6}, C(X,X) = {(2,3), (2,5), (4,3)}, c = 9

1 2 3

4

5

6
2 2

3
1

5

3
4



Max-Flow Min-Cut Theorem

 The value of maximum flow in a network is equal to the 
capacity of its minimum cut

 The shortest augmenting path algorithm yields both a 
maximum flow and a minimum cut:

• maximum flow is the final flow produced by the algorithm

• minimum cut is formed by all the edges from the labeled 
vertices to unlabeled vertices on the last iteration of the 
algorithm

• all the edges from the labeled to unlabeled vertices are full, 
i.e., their flow amounts are equal to the edge capacities, 
while all the edges from the unlabeled to labeled vertices, if 
any, have zero flow amounts on them







Time Efficiency

 The number of augmenting paths needed by the shortest-
augmenting-path algorithm never exceeds nm/2, where n
and m are the number of vertices and edges, respectively

 Since the time required to find shortest augmenting path by 
breadth-first search is in O(n+m)=O(m) for networks 
represented by their adjacency lists, the time efficiency of 
the shortest-augmenting-path algorithm is in O(nm2) for 
this representation

 More efficient algorithms have been found that can run in 
close to O(nm) time, but these algorithms don’t fall into the 
iterative-improvement paradigm



Bipartite Graphs

4 5

109876

1 2 3V

U

Bipartite graph: a graph whose vertices can be partitioned into 

two disjoint sets V and U, not necessarily of the same size, so 

that every edge connects a vertex in V to a vertex in U

A graph is bipartite if and only if it does not have a cycle of an 

odd length



Bipartite Graphs (cont.)

4 5

109876

1 2 3V

U

A bipartite graph is 2-colorable: the vertices can be colored 

in two colors so that every edge has its vertices colored 

differently



Matching in a Graph

4 5

109876

1 2 3V

U

A matching in a graph is a subset of its edges with the property 

that no two edges share a vertex

a matching 

in this graph

M = {(4,8), (5,9)}

A maximum (or maximum cardinality) matching is a matching 

with the largest number of edges

• always exists

• not always unique



Free Vertices and Maximum Matching

4 5

109876

1 2 3V

U

A matching 

in this graph (M)

A matched

vertex

A free

vertex

For a given matching M, a vertex is called free (or unmatched) if  

it is not an endpoint of any edge in M; otherwise, a vertex is said 

to be matched

• If every vertex is matched, then M is a maximum matching

• If there are unmatched or free vertices, then M may be able to be improved

• We can immediately increase a matching by adding an edge connecting two

free vertices (e.g., (1,6) above)



Augmenting Paths and Augmentation

4 5

1098

3V

U

An augmenting path for a matching M is a path from a free vertex 
in V to a free vertex in U whose edges alternate between edges 
not in M and edges in M

 The length of an augmenting path is always odd

 Adding to M the odd numbered path edges and deleting from it the even 
numbered path edges increases the matching size by 1 (augmentation)

 One-edge path between two free vertices is special case of augmenting path

Augmentation along path 2,6,1,7

1 2

76

4 5

1098

3V

U

1 2

76



Augmenting Paths (another example)

109876

1 2 3V

U

Augmentation along

3, 8, 4, 9, 5, 10

4 5

109876

1 2 3V

U

4 5

• Matching on the right is maximum (perfect matching)

• Theorem A matching M is maximum if and only if there exists

no augmenting path with respect to M



Augmenting Path Method (template) 

 Start with some initial matching 

• e.g., the empty set

 Find an augmenting path and augment the current 

matching along that path

• e.g., using breadth-first search like method

 When no augmenting path can be found, terminate and 

return the last matching, which is maximum



BFS-based Augmenting Path Algorithm

 Initialize queue Q with all free vertices in one of the sets (say V)

 While Q is not empty, delete front vertex w and label every 
unlabeled vertex u adjacent to w as follows:

Case 1 (w  is in V)
If u is free, augment the matching along the path ending at u 
by moving backwards until a free vertex in V is reached.  
After that, erase all labels and reinitialize Q with all the 
vertices in V that are still free
If u is matched (not with w), label u with w and enqueue u

Case 2 (w is in U)  Label its matching mate v  with w and 
enqueue v

 After Q becomes empty, return the last matching, which is 
maximum



Example (revisited)

4 5

109876

1 2 3V

U

4 5

109876

1 2 3V

U

Queue: 1 2 3

1

Queue: 1 2 3 Augment 

from 6

Initial Graph Resulting Graph

Each vertex is labeled with the vertex it was reached from.  Queue deletions are 

indicated by arrows.  The free vertex found in U is shaded and labeled for clarity; 

the new matching obtained by the augmentation is shown on the next slide.



Example (cont.)

4 5

109876

1 2 3V

U

4 5

109876

1 2 3V

U

Queue: 2 3

2

Queue: 2 3 6 8 1 4 Augment 

from 7

Initial Graph Resulting Graph

3

86

1



Example (cont.)

4 5

109876

1 2 3V

U

4 5

109876

1 2 3V

U

Queue: 3 Queue: 3 6 8 2 4 9 Augment 

from 10

Initial Graph Resulting Graph
8

3 3

6

4 4



Example: maximum matching found

 This matching is maximum since there are no remaining 
free vertices in V (the queue is empty)

 Note that this matching differs from the maximum 
matching found earlier

maximum

matching

4 5

109876

1 2 3V

U





Notes on Maximum Matching Algorithm

 Each iteration (except the last) matches two free vertices (one 
each from V and U).  Therefore, the number of iterations 
cannot exceed n/2 + 1, where n is the  number of vertices in 
the graph.  The time spent on each iteration is in O(n+m), 
where m is the number of edges in the graph.  Hence, the time 
efficiency is in O(n(n+m)) 

 This can be improved to O(sqrt(n)(n+m)) by combining 
multiple iterations to maximize the number of edges added to 
matching M in each search

 Finding a maximum matching in an arbitrary graph is much 
more difficult, but the problem was solved in 1965 by Jack 
Edmonds



Conversion to Max-Flow Problem

 Add a source and a sink, direct edges (with unit capacity) 
from the source to the vertices of V and from the vertices 
of U to the sink 

 Direct all edges from V to U with unit capacity

V

U

s

t

4 5

10987

1 2 3

6

1

1

1 1 1 1
1

1

1

1

1
1 1

1
1

1 1 1 1 1



Stable Marriage Problem

There is a set Y = {m1,…,mn} of n men and a set X = {w1,…,wn} of 
n women.  Each man has a ranking list of the women, and 
each woman has a ranking list of the men (with no ties in these 
lists). 

A marriage matching M is a set of n pairs (mi, wj).

A pair (m, w) is said to be a blocking pair for matching M if man 
m and woman w are not matched in M but prefer each other to 
their mates in M.

A marriage matching M is called stable if there is no blocking 
pair for it; otherwise, it’s called unstable.

The stable marriage problem is to find a stable marriage 
matching for men’s and women’s given preferences.



Instance of the Stable Marriage Problem

An instance of the stable marriage problem can be specified either by two sets 

of preference lists or by a ranking matrix, as in the example below.

men’s preferences women’s preferences

1st 2nd 3rd 1st 2nd 3rd

Bob: Lea  Ann  Sue Ann: Jim  Tom  Bob

Jim:  Lea  Sue  Ann               Lea:  Tom  Bob  Jim

Tom:  Sue Lea  Ann                Sue:  Jim  Tom  Bob

ranking matrix

Ann  Lea  Sue

Bob  2,3   1,2   3,3

Jim  3,1  1,3   2,1

Tom  3,2   2,1   1,2

{(Bob, Ann)  (Jim, Lea)  (Tom, Sue)} is unstable

{(Bob, Ann)  (Jim, Sue)  (Tom, Lea)} is stable



Stable Marriage Algorithm (Gale-Shapley)

Step 0   Start with all the men and women being free

Step 1   While there are free men, arbitrarily select one of them 
and do the following:
Proposal  The selected free man m proposes to w, the 
next woman on his preference list

Response If w is free, she accepts the proposal to be 
matched with m.  If she is not free, she compares m with 
her current mate.  If she prefers m to him, she accepts 
m’s proposal, making her former mate free; otherwise, 
she simply rejects m’s proposal, leaving m free

Step 2   Return the set of n matched pairs



Example

Free men:

Bob, Jim, Tom

Ann Lea Sue

Bob 2,3 1,2 3,3

Jim 3,1 1,3 2,1

Tom 3,2 2,1 1,2

Bob proposed to Lea

Lea accepted

Ann Lea Sue

Bob 2,3 1,2 3,3

Jim 3,1 1,3 2,1

Tom 3,2 2,1 1,2

Jim proposed to Lea

Lea rejected

Free men:

Jim, Tom



Example (cont.)

Free men:

Jim, Tom

Ann Lea Sue

Bob 2,3 1,2 3,3

Jim 3,1 1,3 2,1

Tom 3,2 2,1 1,2

Jim proposed to Sue

Sue accepted

Ann Lea Sue

Bob 2,3 1,2 3,3

Jim 3,1 1,3 2,1

Tom 3,2 2,1 1,2

Tom proposed to Sue

Sue rejected

Free men:

Tom



Example (cont.)

Free men:

Tom

Ann Lea Sue

Bob 2,3 1,2 3,3

Jim 3,1 1,3 2,1

Tom 3,2 2,1 1,2

Tom proposed to Lea

Lea replaced Bob 

with Tom

Ann Lea Sue

Bob 2,3 1,2 3,3

Jim 3,1 1,3 2,1

Tom 3,2 2,1 1,2

Bob proposed to Ann

Ann accepted

Free men:

Bob



Analysis of the Gale-Shapley Algorithm

 The algorithm terminates after no more than n2 iterations with
a stable marriage output

 The stable matching produced by the algorithm is always 
man-optimal: each man gets the highest rank woman on his list 
under any stable marriage.  One can obtain the woman-
optimal matching by making women propose to men

 A man (woman) optimal matching is unique for a given set of 
participant preferences

 The stable marriage problem has practical applications such 
as matching medical-school graduates with hospitals for 
residency training


