
Maximum Flow

Sample Graph

Contd…

• 3 users A,B,C to be connected to each other.

• Each Connection A-B, A-C, B-C should have atleast 2Mbps Bandwidth.

• Direct and Indirect connections allowed.

• A-a-b-B / A-a-c-b-B

Contd…

• Each connection earns a revenue.

• A-B Rs. 300/Mbps

• B-C Rs. 200/Mbps

• A-C Rs. 400/Mbps

• Allocate bandwidth to maximize revenue.

Linear Program

• XAB bandwidth via short connection A-a-b-B

• YAB bandwidth via short connection A-a-c-b-B

• Like wise XBC XAC YBC YAC

• XAB and YAB both flow b-B, simillary XBC and YBC

• c≤ 10

• XAB + YAB + XAC + YAC ≤ 12

• XAC + YAC + XBC + YBC ≤ 8

• XAB + YBC + YAC ≤ 6

• XBC + YAB + YAC ≤ 13

• XAC + YAB + YBC ≤ 11

• XAB + YAB ≤ 2

• XAC + YAC ≤ 2

• XBC + YBC ≤ 2

• Z = 300(XAB + YAB)+ 200(XBC + YBC) + 400(XAC + YAC)

 SHAHUL HAMEAD H / AP-CSE, SSNCE

NETWORK FLOW PROBLEMS

Network Flow Problems

 Network Flow Problems

 Maximum Flow

 Minimum Cut

 Ford-Fulkerson Algorithm

 Application: Bipartite Matching

 Min-cost Max-flow Algorithm

Network Flow Problems

 A type of network optimization problem

 Arise in many different contexts :

 Networks: routing as many packets as possible on a

given network

 Transportation: sending as many trucks as possible,

where roads have limits on the number of trucks per unit

time

 Bridges: destroying (?!) some bridges to disconnect 𝑠

from 𝑡, while minimizing the cost of destroying the

bridges

Network Flow Problems

 Settings: Given a directed graph 𝐺 = 𝑉, 𝐸 , where

each edge 𝑒 is associated with its capacity

𝑐 𝑒 > 0. Two special nodes source 𝑠 and sink 𝑡 are

given (𝑠 ≠ 𝑡)

 Problem: Maximize the total amount of flow from 𝑠

to 𝑡 subject to two constraints

 Flow on edge 𝑒 doesn’t exceed 𝑐 𝑒

 For every node 𝑣 ≠ 𝑠, 𝑡, incoming flow is equal to

outgoing flow

Network Flow Example (from CLRS)

 Capacities

 Maximum Flow (of 23 units)

𝑠

𝑎

𝑐

𝑏

𝑑

𝑡

16

10

13

4

12

9

14

7

20

4

𝑠

𝑎

𝑐

𝑏

𝑑

𝑡

11

12

1

12

11

7

19

4

Alternate Formulation: Minimum Cut

 We want to remove some edges from the graph

such that after removing the edges, there is no path

from 𝑠 to 𝑡

 The cost of removing 𝑒 is equal to its capacity 𝑐 𝑒

 The minimum cut problem is to find a cut with

minimum total cost

 Theorem: maximum flow = minimum cut

Minimum Cut Example

 Capacities (costs)

 Minimum Cut (red edges are removed)

𝑠

𝑎

𝑐

𝑏

𝑑

𝑡

16

10

13

4

12

9

14

7

20

4

𝑠

𝑎

𝑐

𝑏

𝑑

𝑡

16

10

13

4

12

9

14

7

20

4

𝑠

𝑎

𝑐

𝑏

𝑑

𝑡

11

12

1

12

11

7

19

4

Flow Decomposition

 Any valid flow can be decomposed into flow paths and
circulations

 𝑠 → 𝑎 → 𝑏 → 𝑡: 11

 𝑠 → 𝑐 → 𝑎 → 𝑏 → 𝑡: 1

 𝑠 → 𝑐 → 𝑑 → 𝑏 → 𝑡: 7

 𝑠 → 𝑐 → 𝑑 → 𝑡: 4

Ford-Fulkerson Algorithm

 A simple and practical max-flow algorithm

 Main idea: find valid flow paths until there is none

left, and add them up

 How do we know if this gives a maximum flow?

 Proof sketch: Suppose not. Take a maximum flow 𝑓⋆

and subtract our flow 𝑓. It is a valid flow of positive

total flow. By the flow decomposition, it can be

decomposed into flow paths and circulations. These

must have been found by Ford-Fulkerson. Contradiction.

Back Edges

 We don’t need to maintain the amount of flow on

each edge but work with capacity values directly

 If 𝑓 amount of flow goes through 𝑢 → 𝑣, then:

 Decrease 𝑐 𝑢 → 𝑣 by 𝑓

 Increase 𝑐 𝑣 → 𝑢 by 𝑓

 Why do we need to do this?

 Sending flow to both directions is equivalent to

canceling flow

Ford-Fulkerson Pseudocode

 Set 𝑓total = 0

 Repeat until there is no path from 𝑠 to 𝑡:

 Run DFS from 𝑠 to find a flow path to 𝑡

 Let 𝑓 be the minimum capacity value on the path

 Add 𝑓 to 𝑓total

 For each edge 𝑢 → 𝑣 on the path:

 Decrease 𝑐 𝑢 → 𝑣 by 𝑓

 Increase 𝑐 𝑣 → 𝑢 by 𝑓

Analysis

 Assumption: capacities are integer-valued

 Finding a flow path takes 𝛩(𝑛 + 𝑚) time

 We send at least 1 unit of flow through the path

 If the max-flow is 𝑓⋆, the time complexity is

𝑂 𝑛 + 𝑚 𝑓⋆

 “Bad” in that it depends on the output of the algorithm

 Nonetheless, easy to code and works well in practice

Computing the Min-Cut

 We know that max-flow is equal to min-cut

 And we now know how to find the max-flow

 Question: how do we find the min-cut?

 Answer: use the residual graph

Computing the Min-Cut

 “Subtract” the max-flow from the original graph

𝑠

𝑎

𝑐

𝑏

𝑑

𝑡

16

10

13

4

12

9

14

7

20

4

𝑠

𝑎

𝑐

𝑏

𝑑

𝑡

11

12

1

12

11

7

19

4

𝑠

𝑎

𝑐

𝑏

𝑑

𝑡

Only the topology of the residual

graph is shown.

Don’t forget to add the back edges!

Computing the Min-Cut

 Mark all nodes reachable from 𝑠

 Call the set of reachable nodes 𝐴

 Now separate these nodes from the others

 Edges go from 𝐴 to 𝑉 − 𝐴 are cut

𝑠

𝑎

𝑐

𝑏

𝑑

𝑡

 Look at the original graph and find the cut:

 Why isn’t 𝑏 → 𝑐 cut?

𝑠

𝑎

𝑐

𝑏

𝑑

𝑡

16

10

13

4

12

9

14

7

20

4

Computing the Min-Cut

Bipartite Matching

 Settings:

 𝑛 students and 𝑑 dorms

 Each student wants to live in one of the dorms of his

choice

 Each dorm can accommodate at most one student

 Problem: find an assignment that maximizes the

number of students who get a housing

Flow Network Construction

 Add source and sink

 Make edges between students and dorms

 All the edge weights are 1

𝑠 𝑡

students dorms

Flow Network Construction

 Find the max-flow

 Find the optimal assignment from the chosen edges

𝑠 𝑡

students dorms

Related Problems

 A more reasonable variant of the previous problem:

dorm 𝑗 can accommodate 𝑐𝑗 students

 Make an edge with capacity 𝑐𝑗 from dorm 𝑗 to the sink

 Decomposing a DAG into nonintersecting paths

 Split each vertex 𝑣 into 𝑣left and 𝑣right

 For each edge 𝑢 → 𝑣 in the DAG, make an edge from

𝑢left to 𝑣right

 And many others…

Min-Cost Max-Flow

 A variant of the max-flow problem

 Each edge 𝑒 has capacity 𝑐 𝑒 and cost cost 𝑒

 You have to pay cost 𝑒 amount of money per unit

flow flowing through 𝑒

 Problem: find the maximum flow that has the

minimum total cost

 A lot harder than the regular max-flow

 But there is an easy algorithm that works for small

graphs

Simple (?) Min-Cost Max-Flow

 Forget about the costs and just find a max-flow

 Repeat:

 Take the residual graph

 Find a negative-cost cycle using Bellman-Ford

 If there is none, finish

 Circulate flow through the cycle to decrease the total

cost, until one of the edges is saturated

 The total amount of flow doesn’t change!

 Time complexity: very slow

Notes on Max-Flow Problems

 Remember different formulations of the max-flow

problem

 Again, maximum flow = minimum cut !

 Often the crucial part is to construct the flow

network

 We didn’t cover fast max-flow algorithms

	Maximum Flow.pdf
	FLOW07.pdf

