
Maximum Flow

Sample Graph

Contd…

• 3 users A,B,C to be connected to each other.

• Each Connection A-B, A-C, B-C should have atleast 2Mbps Bandwidth.

• Direct and Indirect connections allowed.

• A-a-b-B / A-a-c-b-B

Contd…

• Each connection earns a revenue.

• A-B Rs. 300/Mbps

• B-C Rs. 200/Mbps

• A-C Rs. 400/Mbps

• Allocate bandwidth to maximize revenue.

Linear Program

• XAB bandwidth via short connection A-a-b-B

• YAB bandwidth via short connection A-a-c-b-B

• Like wise XBC XAC YBC YAC

• XAB and YAB both flow b-B, simillary XBC and YBC

• c≤ 10

• XAB + YAB + XAC + YAC ≤ 12

• XAC + YAC + XBC + YBC ≤ 8

• XAB + YBC + YAC ≤ 6

• XBC + YAB + YAC ≤ 13

• XAC + YAB + YBC ≤ 11

• XAB + YAB ≤ 2

• XAC + YAC ≤ 2

• XBC + YBC ≤ 2

• Z = 300(XAB + YAB)+ 200(XBC + YBC) + 400(XAC + YAC)

 SHAHUL HAMEAD H / AP-CSE, SSNCE

NETWORK FLOW PROBLEMS

Network Flow Problems

 Network Flow Problems

 Maximum Flow

 Minimum Cut

 Ford-Fulkerson Algorithm

 Application: Bipartite Matching

 Min-cost Max-flow Algorithm

Network Flow Problems

 A type of network optimization problem

 Arise in many different contexts :

 Networks: routing as many packets as possible on a

given network

 Transportation: sending as many trucks as possible,

where roads have limits on the number of trucks per unit

time

 Bridges: destroying (?!) some bridges to disconnect 𝑠

from 𝑡, while minimizing the cost of destroying the

bridges

Network Flow Problems

 Settings: Given a directed graph 𝐺 = 𝑉, 𝐸 , where

each edge 𝑒 is associated with its capacity

𝑐 𝑒 > 0. Two special nodes source 𝑠 and sink 𝑡 are

given (𝑠 ≠ 𝑡)

 Problem: Maximize the total amount of flow from 𝑠

to 𝑡 subject to two constraints

 Flow on edge 𝑒 doesn’t exceed 𝑐 𝑒

 For every node 𝑣 ≠ 𝑠, 𝑡, incoming flow is equal to

outgoing flow

Network Flow Example (from CLRS)

 Capacities

 Maximum Flow (of 23 units)

𝑠

𝑎

𝑐

𝑏

𝑑

𝑡

16

10

13

4

12

9

14

7

20

4

𝑠

𝑎

𝑐

𝑏

𝑑

𝑡

11

12

1

12

11

7

19

4

Alternate Formulation: Minimum Cut

 We want to remove some edges from the graph

such that after removing the edges, there is no path

from 𝑠 to 𝑡

 The cost of removing 𝑒 is equal to its capacity 𝑐 𝑒

 The minimum cut problem is to find a cut with

minimum total cost

 Theorem: maximum flow = minimum cut

Minimum Cut Example

 Capacities (costs)

 Minimum Cut (red edges are removed)

𝑠

𝑎

𝑐

𝑏

𝑑

𝑡

16

10

13

4

12

9

14

7

20

4

𝑠

𝑎

𝑐

𝑏

𝑑

𝑡

16

10

13

4

12

9

14

7

20

4

𝑠

𝑎

𝑐

𝑏

𝑑

𝑡

11

12

1

12

11

7

19

4

Flow Decomposition

 Any valid flow can be decomposed into flow paths and
circulations

 𝑠 → 𝑎 → 𝑏 → 𝑡: 11

 𝑠 → 𝑐 → 𝑎 → 𝑏 → 𝑡: 1

 𝑠 → 𝑐 → 𝑑 → 𝑏 → 𝑡: 7

 𝑠 → 𝑐 → 𝑑 → 𝑡: 4

Ford-Fulkerson Algorithm

 A simple and practical max-flow algorithm

 Main idea: find valid flow paths until there is none

left, and add them up

 How do we know if this gives a maximum flow?

 Proof sketch: Suppose not. Take a maximum flow 𝑓⋆

and subtract our flow 𝑓. It is a valid flow of positive

total flow. By the flow decomposition, it can be

decomposed into flow paths and circulations. These

must have been found by Ford-Fulkerson. Contradiction.

Back Edges

 We don’t need to maintain the amount of flow on

each edge but work with capacity values directly

 If 𝑓 amount of flow goes through 𝑢 → 𝑣, then:

 Decrease 𝑐 𝑢 → 𝑣 by 𝑓

 Increase 𝑐 𝑣 → 𝑢 by 𝑓

 Why do we need to do this?

 Sending flow to both directions is equivalent to

canceling flow

Ford-Fulkerson Pseudocode

 Set 𝑓total = 0

 Repeat until there is no path from 𝑠 to 𝑡:

 Run DFS from 𝑠 to find a flow path to 𝑡

 Let 𝑓 be the minimum capacity value on the path

 Add 𝑓 to 𝑓total

 For each edge 𝑢 → 𝑣 on the path:

 Decrease 𝑐 𝑢 → 𝑣 by 𝑓

 Increase 𝑐 𝑣 → 𝑢 by 𝑓

Analysis

 Assumption: capacities are integer-valued

 Finding a flow path takes 𝛩(𝑛 + 𝑚) time

 We send at least 1 unit of flow through the path

 If the max-flow is 𝑓⋆, the time complexity is

𝑂 𝑛 + 𝑚 𝑓⋆

 “Bad” in that it depends on the output of the algorithm

 Nonetheless, easy to code and works well in practice

Computing the Min-Cut

 We know that max-flow is equal to min-cut

 And we now know how to find the max-flow

 Question: how do we find the min-cut?

 Answer: use the residual graph

Computing the Min-Cut

 “Subtract” the max-flow from the original graph

𝑠

𝑎

𝑐

𝑏

𝑑

𝑡

16

10

13

4

12

9

14

7

20

4

𝑠

𝑎

𝑐

𝑏

𝑑

𝑡

11

12

1

12

11

7

19

4

𝑠

𝑎

𝑐

𝑏

𝑑

𝑡

Only the topology of the residual

graph is shown.

Don’t forget to add the back edges!

Computing the Min-Cut

 Mark all nodes reachable from 𝑠

 Call the set of reachable nodes 𝐴

 Now separate these nodes from the others

 Edges go from 𝐴 to 𝑉 − 𝐴 are cut

𝑠

𝑎

𝑐

𝑏

𝑑

𝑡

 Look at the original graph and find the cut:

 Why isn’t 𝑏 → 𝑐 cut?

𝑠

𝑎

𝑐

𝑏

𝑑

𝑡

16

10

13

4

12

9

14

7

20

4

Computing the Min-Cut

Bipartite Matching

 Settings:

 𝑛 students and 𝑑 dorms

 Each student wants to live in one of the dorms of his

choice

 Each dorm can accommodate at most one student

 Problem: find an assignment that maximizes the

number of students who get a housing

Flow Network Construction

 Add source and sink

 Make edges between students and dorms

 All the edge weights are 1

𝑠 𝑡

students dorms

Flow Network Construction

 Find the max-flow

 Find the optimal assignment from the chosen edges

𝑠 𝑡

students dorms

Related Problems

 A more reasonable variant of the previous problem:

dorm 𝑗 can accommodate 𝑐𝑗 students

 Make an edge with capacity 𝑐𝑗 from dorm 𝑗 to the sink

 Decomposing a DAG into nonintersecting paths

 Split each vertex 𝑣 into 𝑣left and 𝑣right

 For each edge 𝑢 → 𝑣 in the DAG, make an edge from

𝑢left to 𝑣right

 And many others…

Min-Cost Max-Flow

 A variant of the max-flow problem

 Each edge 𝑒 has capacity 𝑐 𝑒 and cost cost 𝑒

 You have to pay cost 𝑒 amount of money per unit

flow flowing through 𝑒

 Problem: find the maximum flow that has the

minimum total cost

 A lot harder than the regular max-flow

 But there is an easy algorithm that works for small

graphs

Simple (?) Min-Cost Max-Flow

 Forget about the costs and just find a max-flow

 Repeat:

 Take the residual graph

 Find a negative-cost cycle using Bellman-Ford

 If there is none, finish

 Circulate flow through the cycle to decrease the total

cost, until one of the edges is saturated

 The total amount of flow doesn’t change!

 Time complexity: very slow

Notes on Max-Flow Problems

 Remember different formulations of the max-flow

problem

 Again, maximum flow = minimum cut !

 Often the crucial part is to construct the flow

network

 We didn’t cover fast max-flow algorithms

	Maximum Flow.pdf
	FLOW07.pdf

