
Maximum Flow



Sample Graph



Contd…

• 3 users A,B,C to be connected to each other.

• Each Connection A-B, A-C, B-C should have atleast 2Mbps Bandwidth.

• Direct and Indirect connections allowed.

• A-a-b-B / A-a-c-b-B



Contd…

• Each connection earns a revenue.

• A-B Rs. 300/Mbps

• B-C Rs. 200/Mbps

• A-C Rs. 400/Mbps

• Allocate bandwidth to maximize revenue.



Linear Program

• XAB bandwidth via short connection A-a-b-B

• YAB bandwidth via short connection A-a-c-b-B

• Like wise XBC XAC YBC YAC

• XAB and YAB both flow b-B, simillary XBC and YBC

• c≤  10

• XAB + YAB + XAC + YAC  ≤  12

• XAC + YAC + XBC + YBC  ≤  8



• XAB + YBC + YAC  ≤  6

• XBC + YAB + YAC  ≤  13

• XAC + YAB  + YBC  ≤  11

• XAB + YAB ≤  2

• XAC + YAC  ≤  2

• XBC + YBC  ≤  2

• Z = 300(XAB + YAB)+ 200(XBC + YBC  ) + 400(XAC + YAC  )
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NETWORK FLOW PROBLEMS



Network Flow Problems  

 Network Flow Problems 

 Maximum Flow 

 Minimum Cut 

 Ford-Fulkerson Algorithm 

 Application: Bipartite Matching 

 Min-cost Max-flow Algorithm 



Network Flow Problems 

 A type of network optimization problem 

 Arise in many different contexts :  

 Networks: routing as many packets as possible on a 

given network 

 Transportation: sending as many trucks as possible, 

where roads have limits on the number of trucks per unit 

time 

 Bridges: destroying (?!) some bridges to disconnect 𝑠 

from 𝑡, while minimizing the cost of destroying the 

bridges 



Network Flow Problems 

 Settings: Given a directed graph 𝐺 = 𝑉, 𝐸 , where 

each edge 𝑒 is associated with its capacity 

𝑐 𝑒 > 0. Two special nodes source 𝑠 and sink 𝑡 are 

given (𝑠 ≠ 𝑡) 

 Problem: Maximize the total amount of flow from 𝑠 

to 𝑡 subject to two constraints 

 Flow on edge 𝑒 doesn’t exceed 𝑐 𝑒  

 For every node 𝑣 ≠ 𝑠, 𝑡, incoming flow is equal to 

outgoing flow 



Network Flow Example (from CLRS) 

 Capacities 

 

 

 

 Maximum Flow (of 23 units) 
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Alternate Formulation: Minimum Cut 

 We want to remove some edges from the graph 

such that after removing the edges, there is no path 

from 𝑠 to 𝑡 

 The cost of removing 𝑒 is equal to its capacity 𝑐 𝑒  

 The minimum cut problem is to find a cut with 

minimum total cost 

 

 Theorem: maximum flow = minimum cut  

 



Minimum Cut Example 

 Capacities (costs) 

 

 

 

 Minimum Cut (red edges are removed) 
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Flow Decomposition 

 Any valid flow can be decomposed into flow paths and 
circulations 

 

 

 

 

 𝑠 → 𝑎 → 𝑏 → 𝑡: 11 

 𝑠 → 𝑐 → 𝑎 → 𝑏 → 𝑡: 1 

 𝑠 → 𝑐 → 𝑑 → 𝑏 → 𝑡: 7 

 𝑠 → 𝑐 → 𝑑 → 𝑡: 4 



Ford-Fulkerson Algorithm 

 A simple and practical max-flow algorithm 

 Main idea: find valid flow paths until there is none 

left, and add them up 

 How do we know if this gives a maximum flow? 

 Proof sketch: Suppose not. Take a maximum flow 𝑓⋆ 

and subtract our flow 𝑓. It is a valid flow of positive 

total flow. By the flow decomposition, it can be 

decomposed into flow paths and circulations. These 

must have been found by Ford-Fulkerson. Contradiction. 



Back Edges 

 We don’t need to maintain the amount of flow on 

each edge but work with capacity values directly 

 If 𝑓 amount of flow goes through 𝑢 → 𝑣, then: 

 Decrease 𝑐 𝑢 → 𝑣  by 𝑓 

 Increase 𝑐 𝑣 → 𝑢  by 𝑓 

 Why do we need to do this? 

 Sending flow to both directions is equivalent to 

canceling flow 



Ford-Fulkerson Pseudocode 

 Set 𝑓total = 0 

 Repeat until there is no path from 𝑠 to 𝑡: 

 Run DFS from 𝑠 to find a flow path to 𝑡 

 Let 𝑓 be the minimum capacity value on the path 

 Add 𝑓 to 𝑓total 

 For each edge 𝑢 → 𝑣 on the path: 

 Decrease 𝑐 𝑢 → 𝑣  by 𝑓 

 Increase 𝑐 𝑣 → 𝑢  by 𝑓 



Analysis 

 Assumption: capacities are integer-valued 

 Finding a flow path takes 𝛩(𝑛 + 𝑚) time 

 We send at least 1 unit of flow through the path 

 If the max-flow is 𝑓⋆, the time complexity is 

𝑂 𝑛 + 𝑚 𝑓⋆  

 “Bad” in that it depends on the output of the algorithm 

 Nonetheless, easy to code and works well in practice 



Computing the Min-Cut 

 We know that max-flow is equal to min-cut 

 And we now know how to find the max-flow 

 

 Question: how do we find the min-cut? 

 Answer: use the residual graph 



Computing the Min-Cut 

 “Subtract” the max-flow from the original graph 
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Only the topology of the residual 

graph is shown. 

Don’t forget to add the back edges! 



Computing the Min-Cut 

 Mark all nodes reachable from 𝑠 

 Call the set of reachable nodes 𝐴 

 

 

 

 

 Now separate these nodes from the others 

 Edges go from 𝐴 to 𝑉 − 𝐴 are cut 

𝑠 

𝑎 

𝑐 

𝑏 

𝑑 

𝑡 



 Look at the original graph and find the cut: 

 

 

 

 

 

 Why isn’t 𝑏 → 𝑐 cut? 
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Computing the Min-Cut 



Bipartite Matching 

 Settings: 

 𝑛 students and 𝑑 dorms 

 Each student wants to live in one of the dorms of his 

choice 

 Each dorm can accommodate at most one student  

 

 

 Problem: find an assignment that maximizes the 

number of students who get a housing 



Flow Network Construction 

 Add source and sink 

 Make edges between students and dorms 

 All the edge weights are 1 

𝑠 𝑡 

students dorms 



Flow Network Construction 

 Find the max-flow 

 Find the optimal assignment from the chosen edges 

𝑠 𝑡 

students dorms 



Related Problems 

 A more reasonable variant of the previous problem: 

dorm 𝑗 can accommodate 𝑐𝑗 students 

 Make an edge with capacity 𝑐𝑗 from dorm 𝑗 to the sink 

 Decomposing a DAG into nonintersecting paths 

 Split each vertex 𝑣 into 𝑣left and 𝑣right 

 For each edge 𝑢 → 𝑣 in the DAG, make an edge from 

𝑢left to 𝑣right 

 And many others… 



Min-Cost Max-Flow 

 A variant of the max-flow problem 

 Each edge 𝑒 has capacity 𝑐 𝑒  and cost cost 𝑒  

 You have to pay cost 𝑒  amount of money per unit 

flow flowing through 𝑒 

 Problem: find the maximum flow that has the 

minimum total cost 

 A lot harder than the regular max-flow 

 But there is an easy algorithm that works for small 

graphs 



Simple (?) Min-Cost Max-Flow 

 Forget about the costs and just find a max-flow 

 Repeat: 

 Take the residual graph 

 Find a negative-cost cycle using Bellman-Ford 

 If there is none, finish 

 Circulate flow through the cycle to decrease the total 

cost, until one of the edges is saturated 

 The total amount of flow doesn’t change! 

 Time complexity: very slow 



Notes on Max-Flow Problems 

 Remember different formulations of the max-flow 

problem 

 Again, maximum flow = minimum cut ! 

 Often the crucial part is to construct the flow 

network 

 We didn’t cover fast max-flow algorithms 
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