
Maximum Flow



Sample Graph



Contd…

• 3 users A,B,C to be connected to each other.

• Each Connection A-B, A-C, B-C should have atleast 2Mbps Bandwidth.

• Direct and Indirect connections allowed.

• A-a-b-B / A-a-c-b-B



Contd…

• Each connection earns a revenue.

• A-B Rs. 300/Mbps

• B-C Rs. 200/Mbps

• A-C Rs. 400/Mbps

• Allocate bandwidth to maximize revenue.



Linear Program

• XAB bandwidth via short connection A-a-b-B

• YAB bandwidth via short connection A-a-c-b-B

• Like wise XBC XAC YBC YAC

• XAB and YAB both flow b-B, simillary XBC and YBC

• c≤  10

• XAB + YAB + XAC + YAC  ≤  12

• XAC + YAC + XBC + YBC  ≤  8



• XAB + YBC + YAC  ≤  6

• XBC + YAB + YAC  ≤  13

• XAC + YAB  + YBC  ≤  11

• XAB + YAB ≤  2

• XAC + YAC  ≤  2

• XBC + YBC  ≤  2

• Z = 300(XAB + YAB)+ 200(XBC + YBC  ) + 400(XAC + YAC  )
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NETWORK FLOW PROBLEMS



Network Flow Problems  

 Network Flow Problems 

 Maximum Flow 

 Minimum Cut 

 Ford-Fulkerson Algorithm 

 Application: Bipartite Matching 

 Min-cost Max-flow Algorithm 



Network Flow Problems 

 A type of network optimization problem 

 Arise in many different contexts :  

 Networks: routing as many packets as possible on a 

given network 

 Transportation: sending as many trucks as possible, 

where roads have limits on the number of trucks per unit 

time 

 Bridges: destroying (?!) some bridges to disconnect 𝑠 

from 𝑡, while minimizing the cost of destroying the 

bridges 



Network Flow Problems 

 Settings: Given a directed graph 𝐺 = 𝑉, 𝐸 , where 

each edge 𝑒 is associated with its capacity 

𝑐 𝑒 > 0. Two special nodes source 𝑠 and sink 𝑡 are 

given (𝑠 ≠ 𝑡) 

 Problem: Maximize the total amount of flow from 𝑠 

to 𝑡 subject to two constraints 

 Flow on edge 𝑒 doesn’t exceed 𝑐 𝑒  

 For every node 𝑣 ≠ 𝑠, 𝑡, incoming flow is equal to 

outgoing flow 



Network Flow Example (from CLRS) 

 Capacities 

 

 

 

 Maximum Flow (of 23 units) 
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Alternate Formulation: Minimum Cut 

 We want to remove some edges from the graph 

such that after removing the edges, there is no path 

from 𝑠 to 𝑡 

 The cost of removing 𝑒 is equal to its capacity 𝑐 𝑒  

 The minimum cut problem is to find a cut with 

minimum total cost 

 

 Theorem: maximum flow = minimum cut  

 



Minimum Cut Example 

 Capacities (costs) 

 

 

 

 Minimum Cut (red edges are removed) 
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Flow Decomposition 

 Any valid flow can be decomposed into flow paths and 
circulations 

 

 

 

 

 𝑠 → 𝑎 → 𝑏 → 𝑡: 11 

 𝑠 → 𝑐 → 𝑎 → 𝑏 → 𝑡: 1 

 𝑠 → 𝑐 → 𝑑 → 𝑏 → 𝑡: 7 

 𝑠 → 𝑐 → 𝑑 → 𝑡: 4 



Ford-Fulkerson Algorithm 

 A simple and practical max-flow algorithm 

 Main idea: find valid flow paths until there is none 

left, and add them up 

 How do we know if this gives a maximum flow? 

 Proof sketch: Suppose not. Take a maximum flow 𝑓⋆ 

and subtract our flow 𝑓. It is a valid flow of positive 

total flow. By the flow decomposition, it can be 

decomposed into flow paths and circulations. These 

must have been found by Ford-Fulkerson. Contradiction. 



Back Edges 

 We don’t need to maintain the amount of flow on 

each edge but work with capacity values directly 

 If 𝑓 amount of flow goes through 𝑢 → 𝑣, then: 

 Decrease 𝑐 𝑢 → 𝑣  by 𝑓 

 Increase 𝑐 𝑣 → 𝑢  by 𝑓 

 Why do we need to do this? 

 Sending flow to both directions is equivalent to 

canceling flow 



Ford-Fulkerson Pseudocode 

 Set 𝑓total = 0 

 Repeat until there is no path from 𝑠 to 𝑡: 

 Run DFS from 𝑠 to find a flow path to 𝑡 

 Let 𝑓 be the minimum capacity value on the path 

 Add 𝑓 to 𝑓total 

 For each edge 𝑢 → 𝑣 on the path: 

 Decrease 𝑐 𝑢 → 𝑣  by 𝑓 

 Increase 𝑐 𝑣 → 𝑢  by 𝑓 



Analysis 

 Assumption: capacities are integer-valued 

 Finding a flow path takes 𝛩(𝑛 + 𝑚) time 

 We send at least 1 unit of flow through the path 

 If the max-flow is 𝑓⋆, the time complexity is 

𝑂 𝑛 + 𝑚 𝑓⋆  

 “Bad” in that it depends on the output of the algorithm 

 Nonetheless, easy to code and works well in practice 



Computing the Min-Cut 

 We know that max-flow is equal to min-cut 

 And we now know how to find the max-flow 

 

 Question: how do we find the min-cut? 

 Answer: use the residual graph 



Computing the Min-Cut 

 “Subtract” the max-flow from the original graph 
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Only the topology of the residual 

graph is shown. 

Don’t forget to add the back edges! 



Computing the Min-Cut 

 Mark all nodes reachable from 𝑠 

 Call the set of reachable nodes 𝐴 

 

 

 

 

 Now separate these nodes from the others 

 Edges go from 𝐴 to 𝑉 − 𝐴 are cut 
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 Look at the original graph and find the cut: 

 

 

 

 

 

 Why isn’t 𝑏 → 𝑐 cut? 
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Computing the Min-Cut 



Bipartite Matching 

 Settings: 

 𝑛 students and 𝑑 dorms 

 Each student wants to live in one of the dorms of his 

choice 

 Each dorm can accommodate at most one student  

 

 

 Problem: find an assignment that maximizes the 

number of students who get a housing 



Flow Network Construction 

 Add source and sink 

 Make edges between students and dorms 

 All the edge weights are 1 

𝑠 𝑡 

students dorms 



Flow Network Construction 

 Find the max-flow 

 Find the optimal assignment from the chosen edges 

𝑠 𝑡 

students dorms 



Related Problems 

 A more reasonable variant of the previous problem: 

dorm 𝑗 can accommodate 𝑐𝑗 students 

 Make an edge with capacity 𝑐𝑗 from dorm 𝑗 to the sink 

 Decomposing a DAG into nonintersecting paths 

 Split each vertex 𝑣 into 𝑣left and 𝑣right 

 For each edge 𝑢 → 𝑣 in the DAG, make an edge from 

𝑢left to 𝑣right 

 And many others… 



Min-Cost Max-Flow 

 A variant of the max-flow problem 

 Each edge 𝑒 has capacity 𝑐 𝑒  and cost cost 𝑒  

 You have to pay cost 𝑒  amount of money per unit 

flow flowing through 𝑒 

 Problem: find the maximum flow that has the 

minimum total cost 

 A lot harder than the regular max-flow 

 But there is an easy algorithm that works for small 

graphs 



Simple (?) Min-Cost Max-Flow 

 Forget about the costs and just find a max-flow 

 Repeat: 

 Take the residual graph 

 Find a negative-cost cycle using Bellman-Ford 

 If there is none, finish 

 Circulate flow through the cycle to decrease the total 

cost, until one of the edges is saturated 

 The total amount of flow doesn’t change! 

 Time complexity: very slow 



Notes on Max-Flow Problems 

 Remember different formulations of the max-flow 

problem 

 Again, maximum flow = minimum cut ! 

 Often the crucial part is to construct the flow 

network 

 We didn’t cover fast max-flow algorithms 
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