Maximum Flow

Sample Graph

Contd…

- 3 users A,B,C to be connected to each other.
- Each Connection A-B, A-C, B-C should have atleast 2Mbps Bandwidth.
- Direct and Indirect connections allowed.
- A-a-b-B / A-a-c-b-B

Contd…

- Each connection earns a revenue.
- A-B Rs. 300/Mbps
- B-C Rs. 200/Mbps
- A-C Rs. 400/Mbps
- Allocate bandwidth to maximize revenue.

Linear Program

- X_{AB} bandwidth via short connection A-a-b-B
- Y_{AB} bandwidth via short connection A-a-c-b-B
- Like wise X_{BC} X_{AC} Y_{BC} Y_{AC}
- X_{AB} and Y_{AB} both flow b-B, simillary X_{BC} and Y_{BC}
- c≤ 10
- $X_{AB} + Y_{AB} + X_{AC} + Y_{AC} \le 12$
- $X_{AC} + Y_{AC} + X_{BC} + Y_{BC} \leq 8$
- $X_{AB} + Y_{BC} + Y_{AC} \le 6$
- $X_{BC} + Y_{AB} + Y_{AC} \le 13$
- X_{AC} + Y_{AB} + Y_{BC} \leq 11
- $X_{AB} + Y_{AB} \leq 2$
- X_{AC} + Y_{AC} \leq 2
- $X_{BC} + Y_{BC} \le 2$
- Z = 300(X_{AB} + Y_{AB}) + 200(X_{BC} + Y_{BC}) + 400(X_{AC} + Y_{AC})

SHAHUL HAMEAD H / AP-CSE, SSNCE

NETWORK FLOW PROBLEMS

Network Flow Problems

- Network Flow Problems
	- **D** Maximum Flow
	- **D** Minimum Cut
- □ Ford-Fulkerson Algorithm
- □ Application: Bipartite Matching
- □ Min-cost Max-flow Algorithm

Network Flow Problems

- □ A type of network optimization problem
- Arise in many different contexts :
	- Networks: routing as many packets as possible on a given network
	- **T** Transportation: sending as many trucks as possible, where roads have limits on the number of trucks per unit time
	- **Bridges: destroying (?!) some bridges to disconnect S** from t , while minimizing the cost of destroying the bridges

Network Flow Problems

- Settings: Given a directed graph $G = (V, E)$, where each edge e is associated with its capacity $c(e) > 0$. Two special nodes source S and sink t are given $(s \neq t)$
- Problem: Maximize the total amount of *flow* from to t subject to two constraints
	- **Flow on edge e doesn't exceed** $c(e)$
	- \blacksquare For every node $v \neq s$, t, incoming flow is equal to outgoing flow

Network Flow Example (from CLRS)

Alternate Formulation: Minimum Cut

- \Box We want to remove some edges from the graph such that after removing the edges, there is no path from s to t
- \Box The cost of removing e is equal to its capacity $c(e)$
- \Box The minimum cut problem is to find a cut with minimum total cost
- \Box Theorem: (maximum flow) = (minimum cut)

Minimum Cut Example

□ Minimum Cut (red edges are removed)

Flow Decomposition

□ Any valid flow can be decomposed into flow paths and circulations

Ford-Fulkerson Algorithm

- □ A simple and practical max-flow algorithm
- \Box Main idea: find valid flow paths until there is none left, and add them up
- \Box How do we know if this gives a maximum flow?
	- **P** Proof sketch: Suppose not. Take a maximum flow f^* and subtract our flow f . It is a valid flow of positive total flow. By the flow decomposition, it can be decomposed into flow paths and circulations. These must have been found by Ford-Fulkerson. Contradiction.

Back Edges

- □ We don't need to maintain the amount of flow on each edge but work with capacity values directly
- \Box If f amount of flow goes through $u \rightarrow v$, then: **Decrease** $c(u \rightarrow v)$ by f \blacksquare Increase $c(v \rightarrow u)$ by f
- □ Why do we need to do this?
	- **□** Sending flow to both directions is equivalent to canceling flow

Ford-Fulkerson Pseudocode

- \Box Set $f_{\text{total}} = 0$
- \Box Repeat until there is no path from S to t:
	- \blacksquare Run DFS from s to find a flow path to t
	- \blacksquare Let f be the minimum capacity value on the path
	- \blacksquare Add f to f_{total}
	- \blacksquare For each edge $u \rightarrow v$ on the path:
		- Decrease $c(u \rightarrow v)$ by f
		- Increase $c(v \rightarrow u)$ by f

Analysis

- □ Assumption: capacities are integer-valued
- \Box Finding a flow path takes $\Theta(n + m)$ time
- \Box We send at least 1 unit of flow through the path
- \Box If the max-flow is f^\star , the time complexity is $O((n + m)f^{\star})$
	- "Bad" in that it depends on the output of the algorithm ■ Nonetheless, easy to code and works well in practice

□ We know that max-flow is equal to min-cut

□ And we now know how to find the max-flow

 Question: how do we find the min-cut? Answer: use the *residual graph*

□ "Subtract" the max-flow from the original graph

Only the topology of the residual graph is shown.

Don't forget to add the back edges!

 \square Mark all nodes reachable from S

 \blacksquare Call the set of reachable nodes A

□ Now separate these nodes from the others **■** Edges go from A to $V - A$ are cut

□ Look at the original graph and find the cut:

□ Why isn't $b \rightarrow c$ cut?

Bipartite Matching

□ Settings:

- \Box n students and d dorms
- **E** Each student wants to live in one of the dorms of his choice
- **Each dorm can accommodate at most one student**

 \Box Problem: find an assignment that maximizes the number of students who get a housing

Flow Network Construction

- □ Add source and sink
- □ Make edges between students and dorms All the edge weights are 1

Flow Network Construction

- \Box Find the max-flow
- \Box Find the optimal assignment from the chosen edges

Related Problems

- \Box A more reasonable variant of the previous problem: dorm j can accommodate c_j students
	- \blacksquare Make an edge with capacity c_j from dorm j to the sink
- \Box Decomposing a DAG into nonintersecting paths
	- **Q** Split each vertex v into v_{left} and v_{right}
	- \blacksquare For each edge $u \to v$ in the DAG, make an edge from $u_{\rm left}$ to $v_{\rm right}$
- □ And many others...

Min-Cost Max-Flow

- □ A variant of the max-flow problem
- \Box Each edge e has capacity $c(e)$ and cost $cost(e)$
- \Box You have to pay $cost(e)$ amount of money per unit flow flowing through e
- **n** Problem: find the maximum flow that has the minimum total cost
- □ A lot harder than the regular max-flow
	- But there is an easy algorithm that works for small graphs

Simple (?) Min-Cost Max-Flow

- Forget about the costs and just find *a* max-flow
- □ Repeat:
	- \blacksquare Take the residual graph
	- **□** Find a negative-cost cycle using Bellman-Ford
		- **If there is none, finish**
	- **□ Circulate flow through the cycle to decrease the total** cost, until one of the edges is saturated
		- **The total amount of flow doesn't change!**
- \Box Time complexity: very slow

Notes on Max-Flow Problems

- □ Remember different formulations of the max-flow problem
	- Again, (maximum flow) $=$ (minimum cut)!
- \Box Often the crucial part is to construct the flow network
- \Box We didn't cover fast max-flow algorithms