
A discussion on algorithms

R. Ramanujam

The Institute of Mathematical Sciences, Chennai, India

email: jam@imsc.res.in

FDP on Algorithms, SSNCE

January 25, 2016



First words

◮ I thank SSNCE for providing me with this opportunity.

◮ The talk owes a great deal to long discussions over many
years with my colleague Venkatesh Raman.

◮ The presentation follows style and material from many
online sources, especially notes by Erik Demaine, Erikson,
Kozen, Parberry.

◮ Please feel free to interrupt any time.

FDP on Algos, SSNCE Jan 25, 2016



A quote

Some words well worth listening to:

We should explain, before proceeding, that it is not
our object to consider this programme with reference
to the actual arrangement of the data on the
Variables of the engine, but simply as an abstract
question of the nature and number of the operations
required to be perfomed during its complete solution.

Ada Augusta Byron King, Countess of Lovelace
(1843)

FDP on Algos, SSNCE Jan 25, 2016



A few questions

Some questions we need answers to:

◮ Why should we study algorithms ?

FDP on Algos, SSNCE Jan 25, 2016



A few questions

Some questions we need answers to:

◮ Why should we study algorithms ?

◮ Why should we study algorithms ?

FDP on Algos, SSNCE Jan 25, 2016



A few questions

Some questions we need answers to:

◮ Why should we study algorithms ?

◮ Why should we study algorithms ?

◮ What can an algorithms course expect to teach a
(reasonably sincere) student ?

FDP on Algos, SSNCE Jan 25, 2016



A few questions

Some questions we need answers to:

◮ Why should we study algorithms ?

◮ Why should we study algorithms ?

◮ What can an algorithms course expect to teach a
(reasonably sincere) student ?

◮ How well do we achieve these objectives ? Why ?

FDP on Algos, SSNCE Jan 25, 2016



A science ?

Is computer science really a science ?

FDP on Algos, SSNCE Jan 25, 2016



A science ?

Is computer science really a science ?

◮ What are the elements of any machine science ?

FDP on Algos, SSNCE Jan 25, 2016



A science ?

Is computer science really a science ?

◮ What are the elements of any machine science ?

◮ A proposal for a pressure cooker science !

FDP on Algos, SSNCE Jan 25, 2016



A science ?

Is computer science really a science ?

◮ What are the elements of any machine science ?

◮ A proposal for a pressure cooker science !

◮ The two paradigms of computer science.

FDP on Algos, SSNCE Jan 25, 2016



What is easy?

What is the hardest problem you have ever solved ?

FDP on Algos, SSNCE Jan 25, 2016



What is easy?

What is the hardest problem you have ever solved ?

◮ What is hard for one may be easy for another.

FDP on Algos, SSNCE Jan 25, 2016



What is easy?

What is the hardest problem you have ever solved ?

◮ What is hard for one may be easy for another.

◮ What is hard today may be easy tomorrow.

FDP on Algos, SSNCE Jan 25, 2016



What is easy?

What is the hardest problem you have ever solved ?

◮ What is hard for one may be easy for another.

◮ What is hard today may be easy tomorrow.

◮ Difficulty vs Hardness as discussed here.

FDP on Algos, SSNCE Jan 25, 2016



An exercise

What happens when you login ?

FDP on Algos, SSNCE Jan 25, 2016



An exercise

What happens when you login ?

◮ One way functions.

FDP on Algos, SSNCE Jan 25, 2016



History

Algorithm, named after the 9th century Persian mathematician
Abu Abd Allah Muhammad ibn Musa al-Khwarizmi.

FDP on Algos, SSNCE Jan 25, 2016



History

Algorithm, named after the 9th century Persian mathematician
Abu Abd Allah Muhammad ibn Musa al-Khwarizmi.

◮ Until recently, the word algorithm referred exclusively to
pencil-and-paper methods for numerical calculations.
People trained in the reliable execution of these methods
were called

FDP on Algos, SSNCE Jan 25, 2016



History

Algorithm, named after the 9th century Persian mathematician
Abu Abd Allah Muhammad ibn Musa al-Khwarizmi.

◮ Until recently, the word algorithm referred exclusively to
pencil-and-paper methods for numerical calculations.
People trained in the reliable execution of these methods
were called computers !

FDP on Algos, SSNCE Jan 25, 2016



History

Algorithm, named after the 9th century Persian mathematician
Abu Abd Allah Muhammad ibn Musa al-Khwarizmi.

◮ Until recently, the word algorithm referred exclusively to
pencil-and-paper methods for numerical calculations.
People trained in the reliable execution of these methods
were called computers !

◮ The word computer comes from the Latin word putare
which means ‘to trim/prune’, ‘to clean’, ‘to arrange’, ‘to
value’, ‘to judge’, and ‘to consider/suppose’.

FDP on Algos, SSNCE Jan 25, 2016



History

Algorithm, named after the 9th century Persian mathematician
Abu Abd Allah Muhammad ibn Musa al-Khwarizmi.

◮ Until recently, the word algorithm referred exclusively to
pencil-and-paper methods for numerical calculations.
People trained in the reliable execution of these methods
were called computers !

◮ The word computer comes from the Latin word putare
which means ‘to trim/prune’, ‘to clean’, ‘to arrange’, ‘to
value’, ‘to judge’, and ‘to consider/suppose’.

◮ An algorithm from the Rhind papyrus (19th century
BCE).

FDP on Algos, SSNCE Jan 25, 2016



Correctness

The Rhind papyrus algorithm breaks the difficult task of
general multiplication into four simpler operations:

◮ determining parity (even or odd),

◮ addition,

◮ doubling, and

◮ mediation (halving a number, rounding down).

FDP on Algos, SSNCE Jan 25, 2016



Correctness

The Rhind papyrus algorithm breaks the difficult task of
general multiplication into four simpler operations:

◮ determining parity (even or odd),

◮ addition,

◮ doubling, and

◮ mediation (halving a number, rounding down).

◮ Its correctness follows from the recursive identity: for
non-negative integers x , y , x · y = 0 if x = 0. When x is
even, x · y = ⌊x/2⌋ · (y + y). When x is odd,
x · y = ⌊x/2⌋ · (y + y) + y .

FDP on Algos, SSNCE Jan 25, 2016



An algorithm?

Here is a recipé to become a millionaire (or pauper).

◮ You place some amount of money, say x , on the betting
table. A fair coin is tossed. If it comes up Heads, you lose
your x . If it comes up Tails, you get your x and another x .

FDP on Algos, SSNCE Jan 25, 2016



An algorithm?

Here is a recipé to become a millionaire (or pauper).

◮ You place some amount of money, say x , on the betting
table. A fair coin is tossed. If it comes up Heads, you lose
your x . If it comes up Tails, you get your x and another x .

◮ Here is a rich man’s strategy. Initially he will place Re.
1.00 on the table. At any stage, if he loses x , he will play
again with 2x . However, at any stage if he wins, he will
stop playing and go home.

FDP on Algos, SSNCE Jan 25, 2016



An algorithm?

Here is a recipé to become a millionaire (or pauper).

◮ You place some amount of money, say x , on the betting
table. A fair coin is tossed. If it comes up Heads, you lose
your x . If it comes up Tails, you get your x and another x .

◮ Here is a rich man’s strategy. Initially he will place Re.
1.00 on the table. At any stage, if he loses x , he will play
again with 2x . However, at any stage if he wins, he will
stop playing and go home.

◮ Does this constitute an algorithm for the rich man ?

FDP on Algos, SSNCE Jan 25, 2016



An algorithm?

Here is a recipé to become a millionaire (or pauper).

◮ You place some amount of money, say x , on the betting
table. A fair coin is tossed. If it comes up Heads, you lose
your x . If it comes up Tails, you get your x and another x .

◮ Here is a rich man’s strategy. Initially he will place Re.
1.00 on the table. At any stage, if he loses x , he will play
again with 2x . However, at any stage if he wins, he will
stop playing and go home.

◮ Does this constitute an algorithm for the rich man ?

◮ What is the probability that the gambling does eventually
halt?

FDP on Algos, SSNCE Jan 25, 2016



Correctness

We require algorithms that are correct for all possible inputs.

FDP on Algos, SSNCE Jan 25, 2016



Correctness

We require algorithms that are correct for all possible inputs.

◮ We must prove that our algorithms are correct.

FDP on Algos, SSNCE Jan 25, 2016



Correctness

We require algorithms that are correct for all possible inputs.

◮ We must prove that our algorithms are correct.

◮ Correctness proofs almost always involve induction.

FDP on Algos, SSNCE Jan 25, 2016



Correctness

We require algorithms that are correct for all possible inputs.

◮ We must prove that our algorithms are correct.

◮ Correctness proofs almost always involve induction.

◮ We have to formally state what it’s supposed to do.

FDP on Algos, SSNCE Jan 25, 2016



Correctness

We require algorithms that are correct for all possible inputs.

◮ We must prove that our algorithms are correct.

◮ Correctness proofs almost always involve induction.

◮ We have to formally state what it’s supposed to do.

◮ It is important to remember the distinction between a
problem and an algorithm.

FDP on Algos, SSNCE Jan 25, 2016



Correctness

We require algorithms that are correct for all possible inputs.

◮ We must prove that our algorithms are correct.

◮ Correctness proofs almost always involve induction.

◮ We have to formally state what it’s supposed to do.

◮ It is important to remember the distinction between a
problem and an algorithm.

◮ Often, the hardest part of answering any question is
figuring out the right way to ask it !

FDP on Algos, SSNCE Jan 25, 2016



Analysis

Ideally, we want the fastest possible algorithm for any
particular problem.

FDP on Algos, SSNCE Jan 25, 2016



Analysis

Ideally, we want the fastest possible algorithm for any
particular problem.

◮ We require algorithms that always run efficiently, even in
the worst case.

FDP on Algos, SSNCE Jan 25, 2016



Analysis

Ideally, we want the fastest possible algorithm for any
particular problem.

◮ We require algorithms that always run efficiently, even in
the worst case.

◮ How do we determine which is the worst case instance ?

FDP on Algos, SSNCE Jan 25, 2016



Analysis

Ideally, we want the fastest possible algorithm for any
particular problem.

◮ We require algorithms that always run efficiently, even in
the worst case.

◮ How do we determine which is the worst case instance ?

◮ How do we measure running time ?

FDP on Algos, SSNCE Jan 25, 2016



Analysis

Ideally, we want the fastest possible algorithm for any
particular problem.

◮ We require algorithms that always run efficiently, even in
the worst case.

◮ How do we determine which is the worst case instance ?

◮ How do we measure running time ?

◮ Sometimes we are also interested in other computational
resources: space, randomness, inter-process messages,
and so forth. But the techniques are similar.

FDP on Algos, SSNCE Jan 25, 2016



An example

An online matching service ”We Match You” ! Give your
preferences, and we will find the Right One for you !

FDP on Algos, SSNCE Jan 25, 2016



An example

An online matching service ”We Match You” ! Give your
preferences, and we will find the Right One for you !
For simplicity assume:

◮ n men, n women.

◮ Every woman ranks all men, no ties.

◮ Every man ranks all women, no ties.

FDP on Algos, SSNCE Jan 25, 2016



Quality of solution

We are looking for a bijection between two sets of the same
size, obviously there are lots of them. But how do we say a
matching is good ?

FDP on Algos, SSNCE Jan 25, 2016



Quality of solution

We are looking for a bijection between two sets of the same
size, obviously there are lots of them. But how do we say a
matching is good ?

◮ Suppose there exist women 1 and 2, and men A and B
such that:

◮ We match 1 with A, 2 with B .
◮ But 1 prefers B over A; B prefers 1 over 2.

◮ Surely 1 and B would prefer beng matched with each
other over the current assignment.

◮ Thus we can define a good matching to be one where
such a thing would not happen, but it is no longer clear
that a good matching exists !

FDP on Algos, SSNCE Jan 25, 2016



An algorithm

”We Match You” goes about solving the problem as follows:

◮ An arbitrary unassigned man A makes an offer to the best
woman u (according to the man’s preference list) who has
not already rejected it.

FDP on Algos, SSNCE Jan 25, 2016



An algorithm

”We Match You” goes about solving the problem as follows:

◮ An arbitrary unassigned man A makes an offer to the best
woman u (according to the man’s preference list) who has
not already rejected it.

◮ Each woman ultimately accepts the best offer that she
receives, according to her preference list. Thus, if u is
currently unassigned, she (tentatively) accepts the offer
from A. If u already has an assignment but prefers A, she
rejects her existing assignment and (tentatively) accepts
the new offer from A. Otherwise, u rejects the new offer.

FDP on Algos, SSNCE Jan 25, 2016



An algorithm

”We Match You” goes about solving the problem as follows:

◮ An arbitrary unassigned man A makes an offer to the best
woman u (according to the man’s preference list) who has
not already rejected it.

◮ Each woman ultimately accepts the best offer that she
receives, according to her preference list. Thus, if u is
currently unassigned, she (tentatively) accepts the offer
from A. If u already has an assignment but prefers A, she
rejects her existing assignment and (tentatively) accepts
the new offer from A. Otherwise, u rejects the new offer.

◮ An instance of the problem.

FDP on Algos, SSNCE Jan 25, 2016



The solution

We have a good matching. Just how good is it ?

◮ No woman was matched with her favourite man.

◮ No man was matched with his favourite woman.

◮ At least one man was matched with his least favourite
woman.

◮ The assignment is stable, not subject to deviation.

FDP on Algos, SSNCE Jan 25, 2016



The solution

We have a good matching. Just how good is it ?

◮ No woman was matched with her favourite man.

◮ No man was matched with his favourite woman.

◮ At least one man was matched with his least favourite
woman.

◮ The assignment is stable, not subject to deviation.

◮ This is not the only one; the matching
(A, r), (B , s), (C , q), (D, t) is also stable.

FDP on Algos, SSNCE Jan 25, 2016



Running time

Each man makes an offer to each woman at most once, so the
algorithm requires at most n2 rounds.

FDP on Algos, SSNCE Jan 25, 2016



Running time

Each man makes an offer to each woman at most once, so the
algorithm requires at most n2 rounds.

◮ We can use representations like M[i , j ] and W [i , j ] where
M[i , j ] gives the j th man in woman i ’s list.

FDP on Algos, SSNCE Jan 25, 2016



Running time

Each man makes an offer to each woman at most once, so the
algorithm requires at most n2 rounds.

◮ We can use representations like M[i , j ] and W [i , j ] where
M[i , j ] gives the j th man in woman i ’s list.

◮ A somewhat harder exercise is to prove that there are
inputs (and choices of who makes offers when) that force
n2 rounds before the algorithm terminates.

FDP on Algos, SSNCE Jan 25, 2016



Running time

Each man makes an offer to each woman at most once, so the
algorithm requires at most n2 rounds.

◮ We can use representations like M[i , j ] and W [i , j ] where
M[i , j ] gives the j th man in woman i ’s list.

◮ A somewhat harder exercise is to prove that there are
inputs (and choices of who makes offers when) that force
n2 rounds before the algorithm terminates.

◮ Thus, the upper bound on the worst-case running time
cannot be improved; in this case, we say our analysis is
tight.

FDP on Algos, SSNCE Jan 25, 2016



Correctness

This algorithm is often misattributed to David Gale and Lloyd
Shapley, who formally analyzed the algorithm and first proved
that it computes a stable matching in 1962.

FDP on Algos, SSNCE Jan 25, 2016



Correctness

This algorithm is often misattributed to David Gale and Lloyd
Shapley, who formally analyzed the algorithm and first proved
that it computes a stable matching in 1962.

◮ The algorithm continues as long as there is at least one
unfilled position.

FDP on Algos, SSNCE Jan 25, 2016



Correctness

This algorithm is often misattributed to David Gale and Lloyd
Shapley, who formally analyzed the algorithm and first proved
that it computes a stable matching in 1962.

◮ The algorithm continues as long as there is at least one
unfilled position.

◮ Conversely, when the algorithm terminates, every position
is filled.

FDP on Algos, SSNCE Jan 25, 2016



Correctness

This algorithm is often misattributed to David Gale and Lloyd
Shapley, who formally analyzed the algorithm and first proved
that it computes a stable matching in 1962.

◮ The algorithm continues as long as there is at least one
unfilled position.

◮ Conversely, when the algorithm terminates, every position
is filled.

◮ No man can make an offer to more than one woman, and
no woman accepts an offer from more than one man.

FDP on Algos, SSNCE Jan 25, 2016



Correctness

This algorithm is often misattributed to David Gale and Lloyd
Shapley, who formally analyzed the algorithm and first proved
that it computes a stable matching in 1962.

◮ The algorithm continues as long as there is at least one
unfilled position.

◮ Conversely, when the algorithm terminates, every position
is filled.

◮ No man can make an offer to more than one woman, and
no woman accepts an offer from more than one man.

◮ So the algorithm does compute a matching. How do we
show it is stable ?

FDP on Algos, SSNCE Jan 25, 2016



Proof of stability

The argument is surprisingly simple.

◮ Suppose woman u is assigned to man A in the final
matching, but prefers B .

◮ Because every woman accepts the best offer she receives,
u received no offer she liked more than A.

◮ In particular, B never made an offer to u.

◮ On the other hand, B made offers to every woman he
likes more than v .

◮ Thus, B prefers v to u, and so there is no instability.

FDP on Algos, SSNCE Jan 25, 2016



More to analysis

We are not done yet. Does it matter who makes the offer in
the first round ?

FDP on Algos, SSNCE Jan 25, 2016



More to analysis

We are not done yet. Does it matter who makes the offer in
the first round ?

◮ We can show that no matter which unassigned man
makes an offer in each round, the algorithm always
computes the same matching!

FDP on Algos, SSNCE Jan 25, 2016



More to analysis

We are not done yet. Does it matter who makes the offer in
the first round ?

◮ We can show that no matter which unassigned man
makes an offer in each round, the algorithm always
computes the same matching!

◮ Let us say that u is a feasible choice for A if there is a
stable matching that assigns u to A.

FDP on Algos, SSNCE Jan 25, 2016



More to analysis

We are not done yet. Does it matter who makes the offer in
the first round ?

◮ We can show that no matter which unassigned man
makes an offer in each round, the algorithm always
computes the same matching!

◮ Let us say that u is a feasible choice for A if there is a
stable matching that assigns u to A.

◮ Lemma: According to the algorithm, each man A is
rejected only by women who are infeasible for A.

FDP on Algos, SSNCE Jan 25, 2016



Proof of Lemma
Lemma: According to the algorithm, each man A is rejected
only by women who are infeasible for A.

◮ We prove the lemma by induction. Consider an arbitrary
round of the algorithm, in which woman u rejects man A
for B .

FDP on Algos, SSNCE Jan 25, 2016



Proof of Lemma
Lemma: According to the algorithm, each man A is rejected
only by women who are infeasible for A.

◮ We prove the lemma by induction. Consider an arbitrary
round of the algorithm, in which woman u rejects man A
for B .

◮ The rejection implies that u prefers B to A.

FDP on Algos, SSNCE Jan 25, 2016



Proof of Lemma
Lemma: According to the algorithm, each man A is rejected
only by women who are infeasible for A.

◮ We prove the lemma by induction. Consider an arbitrary
round of the algorithm, in which woman u rejects man A
for B .

◮ The rejection implies that u prefers B to A.
◮ Every woman that appears higher than u in B ’s

preference list has already rejected B and therefore, by
the inductive hypothesis, is infeasible for B .

FDP on Algos, SSNCE Jan 25, 2016



Proof of Lemma
Lemma: According to the algorithm, each man A is rejected
only by women who are infeasible for A.

◮ We prove the lemma by induction. Consider an arbitrary
round of the algorithm, in which woman u rejects man A
for B .

◮ The rejection implies that u prefers B to A.
◮ Every woman that appears higher than u in B ’s

preference list has already rejected B and therefore, by
the inductive hypothesis, is infeasible for B .

◮ Now consider an arbitrary matching that assigns u to A.
We have already established that u prefers B to A. If B
prefers u over his partner, the matching is unstable.

FDP on Algos, SSNCE Jan 25, 2016



Proof of Lemma
Lemma: According to the algorithm, each man A is rejected
only by women who are infeasible for A.

◮ We prove the lemma by induction. Consider an arbitrary
round of the algorithm, in which woman u rejects man A
for B .

◮ The rejection implies that u prefers B to A.
◮ Every woman that appears higher than u in B ’s

preference list has already rejected B and therefore, by
the inductive hypothesis, is infeasible for B .

◮ Now consider an arbitrary matching that assigns u to A.
We have already established that u prefers B to A. If B
prefers u over his partner, the matching is unstable.

◮ On the other hand, if B prefers his partner over u, then
the partner is infeasible, and again the matching is
unstable. We conclude that there is no stable matching
that assigns u to A.

FDP on Algos, SSNCE Jan 25, 2016



A corollary

Let best(A) denote the highest-ranked feasible woman on A’s
preference list.

FDP on Algos, SSNCE Jan 25, 2016



A corollary

Let best(A) denote the highest-ranked feasible woman on A’s
preference list.

◮ Lemma implies that every woman that A prefers to its
final assignment is infeasible for A.

FDP on Algos, SSNCE Jan 25, 2016



A corollary

Let best(A) denote the highest-ranked feasible woman on A’s
preference list.

◮ Lemma implies that every woman that A prefers to its
final assignment is infeasible for A.

◮ On the other hand, the final matching is stable, so the
woman assigned to A is feasible for A. Thus we have:

FDP on Algos, SSNCE Jan 25, 2016



A corollary

Let best(A) denote the highest-ranked feasible woman on A’s
preference list.

◮ Lemma implies that every woman that A prefers to its
final assignment is infeasible for A.

◮ On the other hand, the final matching is stable, so the
woman assigned to A is feasible for A. Thus we have:

◮ Corollary: The algorithm assigns best(A) to A, for every
A.

FDP on Algos, SSNCE Jan 25, 2016



Another consequence

The algorithm does the best for every man A, but also does
the worst possible from a woman’s point of view !

FDP on Algos, SSNCE Jan 25, 2016



Another consequence

The algorithm does the best for every man A, but also does
the worst possible from a woman’s point of view !

◮ Let worst(u) denote the lowest-ranked feasible man on
u’s preference list.

◮ Lemma: According to the algorithm, each woman u is
assigned worst(u).

FDP on Algos, SSNCE Jan 25, 2016



Another consequence

The algorithm does the best for every man A, but also does
the worst possible from a woman’s point of view !

◮ Let worst(u) denote the lowest-ranked feasible man on
u’s preference list.

◮ Lemma: According to the algorithm, each woman u is
assigned worst(u).

◮ Suppose the algorithm matches u with A. Consider an
arbitrary stable matching where A is matched with v 6= u.
By previous corollary, best(A) = v . But the matching is
stable, so u prefers her assigned man to A.

FDP on Algos, SSNCE Jan 25, 2016



Another consequence

The algorithm does the best for every man A, but also does
the worst possible from a woman’s point of view !

◮ Let worst(u) denote the lowest-ranked feasible man on
u’s preference list.

◮ Lemma: According to the algorithm, each woman u is
assigned worst(u).

◮ Suppose the algorithm matches u with A. Consider an
arbitrary stable matching where A is matched with v 6= u.
By previous corollary, best(A) = v . But the matching is
stable, so u prefers her assigned man to A.

◮ This works for every stable assignment, so u prefers every
assigned match over A; that is, A = worst(u).

FDP on Algos, SSNCE Jan 25, 2016



Main reason

The study of algorithms is ultimately about learning two skills
that are crucial for all computer scientists.

FDP on Algos, SSNCE Jan 25, 2016



Main reason

The study of algorithms is ultimately about learning two skills
that are crucial for all computer scientists.

◮ Intuition: How to think about abstract computation.

◮ Language: How to talk about abstract computation.

◮ As teachers, our main role is to share the conviction that
thinking and talking about abstract computation is crucial
for computer science students.

FDP on Algos, SSNCE Jan 25, 2016



Intuition

What does it mean to develop algorithmic intuition ?

FDP on Algos, SSNCE Jan 25, 2016



Intuition

What does it mean to develop algorithmic intuition ?

◮ How do various algorithms really work ?

◮ When you see a problem for the first time, how should
you attack it ?

◮ How do you tell which techniques will work at all, and
which ones will work best ?

◮ How do you judge whether one algorithm is better than
another ?

◮ How do you tell whether you have the best possible
solution ?

FDP on Algos, SSNCE Jan 25, 2016



Intuition

What does it mean to develop algorithmic intuition ?

◮ How do various algorithms really work ?

◮ When you see a problem for the first time, how should
you attack it ?

◮ How do you tell which techniques will work at all, and
which ones will work best ?

◮ How do you judge whether one algorithm is better than
another ?

◮ How do you tell whether you have the best possible
solution ?

◮ These are not easy questions.

FDP on Algos, SSNCE Jan 25, 2016



Algorithmic facts

Along the way, we also pick up a bunch of algorithmic facts.

◮ Mergesort runs in Θ(n log n) time.

◮ The amortized time to search in a splay tree is O(logn).

◮ Greedy algorithms don’t always produce optimal solutions.

◮ The traveling salesman problem is NP-hard.

FDP on Algos, SSNCE Jan 25, 2016



Algorithmic facts

Along the way, we also pick up a bunch of algorithmic facts.

◮ Mergesort runs in Θ(n log n) time.

◮ The amortized time to search in a splay tree is O(logn).

◮ Greedy algorithms don’t always produce optimal solutions.

◮ The traveling salesman problem is NP-hard.

◮ But these are not the main point; they can be learnt from
wikipedia.

FDP on Algos, SSNCE Jan 25, 2016



Algorithmic facts

Along the way, we also pick up a bunch of algorithmic facts.

◮ Mergesort runs in Θ(n log n) time.

◮ The amortized time to search in a splay tree is O(logn).

◮ Greedy algorithms don’t always produce optimal solutions.

◮ The traveling salesman problem is NP-hard.

◮ But these are not the main point; they can be learnt from
wikipedia.

◮ The point is to provide enough intuition and experience
to know what to look for.

FDP on Algos, SSNCE Jan 25, 2016



Algorithmic skills

The study does aim to provide practice in a lot of algorithm
design and analysis skills.

FDP on Algos, SSNCE Jan 25, 2016



Algorithmic skills

The study does aim to provide practice in a lot of algorithm
design and analysis skills.

◮ Finding useful examples and counterexamples

◮ Developing induction proofs

◮ Solving recurrences

◮ Using big-Oh notation

◮ Using probability

◮ Giving problems crisp mathematical descriptions, and so
on.

FDP on Algos, SSNCE Jan 25, 2016



Algorithmic skills

The study does aim to provide practice in a lot of algorithm
design and analysis skills.

◮ Finding useful examples and counterexamples

◮ Developing induction proofs

◮ Solving recurrences

◮ Using big-Oh notation

◮ Using probability

◮ Giving problems crisp mathematical descriptions, and so
on.

◮ This is all incredibly useful for developing intuition, but
this is not the main point either.

FDP on Algos, SSNCE Jan 25, 2016



A good reason

Then what is indeed the main reason to study algorithms ?

FDP on Algos, SSNCE Jan 25, 2016



A good reason

Then what is indeed the main reason to study algorithms ?

◮ Good algorithms are extremely useful, elegant, surprising,
deep, even beautiful.

FDP on Algos, SSNCE Jan 25, 2016



A good reason

Then what is indeed the main reason to study algorithms ?

◮ Good algorithms are extremely useful, elegant, surprising,
deep, even beautiful.

◮ But, most importantly, algorithms are fun !

FDP on Algos, SSNCE Jan 25, 2016



Discussion time

Thank you.
Questions, comments, suggestions welcome; also, please write
to jam@imsc.res.in.

FDP on Algos, SSNCE Jan 25, 2016


