
Brute Force and

Exhaustive Search

R S Milton

miltonrs@ssn.edu.in

SSN College of Engineering

Faculty Development Program

Design and Analysis of Algorithms



Brute Force, or “Just Do It!”

• Systematically try all possibilities.



Brute Force, or “Just Do It!”

• Systematically try all possibilities.

• A lot of careful and accurate work, fit for computer.



Brute Force, or “Just Do It!”

• Systematically try all possibilities.

• A lot of careful and accurate work, fit for computer.

• As the problem size increases, impractical even for a com-
puter!



Brute Force, or “Just Do It!”

• Systematically try all possibilities.

• A lot of careful and accurate work, fit for computer.

• As the problem size increases, impractical even for a com-
puter!

• Helps to understand the nature of the problem.



Brute Force, or “Just Do It!”

• Systematically try all possibilities.

• A lot of careful and accurate work, fit for computer.

• As the problem size increases, impractical even for a com-
puter!

• Helps to understand the nature of the problem.

• Decompose to small problems,



Brute Force, or “Just Do It!”

• Systematically try all possibilities.

• A lot of careful and accurate work, fit for computer.

• As the problem size increases, impractical even for a com-
puter!

• Helps to understand the nature of the problem.

• Decompose to small problems,• Decompose to small problems, and then use brute force!



Brute Force, or “Just Do It!”

• Systematically try all possibilities.

• A lot of careful and accurate work, fit for computer.

• As the problem size increases, impractical even for a com-
puter!

• Helps to understand the nature of the problem.

• Decompose to small problems,• Decompose to small problems, and then use brute force!

• Ultimately, brute force is the only method!



Brute Force, or “Just Do It!”

• Systematically try all possibilities.

• A lot of careful and accurate work, fit for computer.

• As the problem size increases, impractical even for a com-
puter!

• Helps to understand the nature of the problem.

• Decompose to small problems,• Decompose to small problems, and then use brute force!

• Ultimately, brute force is the only method!

Postpone it as long as possible!



Problems

• Selection sort
• Insertion sort
• Closest pair of points
• Convex Hull
• Traveling Salesman Problem
• Knapsack
• Assignment



Problems

• Selection sort
• Insertion sort
• Closest pair of points
• Convex Hull
• Traveling Salesman Problem
• Knapsack
• Assignment



Closest Pair of Points

Which

is

the
closest

pair?



Closest Pair of Points

Which

is

the
closest

pair?



Closest Pair of Points

Which

is

the
closest

pair?

Problem:

Input: A list P of n points
p1(x1, y1), . . . pn(xn, yn)

Output: Distance between the closest pair of
points {p, q} ⊆ P



Closest Pair of Points

Which

is

the
closest

pair?

Problem:

Input: A list P of n points
p1(x1, y1), . . . pn(xn, yn)

Output: Distance between the closest pair of
points {p, q} ⊆ P

Definition: Distance between pi and pj
d(pi, pj) =

√
(xi − xj)2 + (yi − yj)2



Algorithm



Algorithm

Algorithm ClosestPair (P )



Algorithm

Algorithm ClosestPair (P )

• Input: A list P of n points p1(x1, y1), . . . pn(xn, yn)



Algorithm

Algorithm ClosestPair (P )

• Input: A list P of n points p1(x1, y1), . . . pn(xn, yn)

• Output: The distance between the closest pair of points



Algorithm

Algorithm ClosestPair (P )

• Input: A list P of n points p1(x1, y1), . . . pn(xn, yn)

• Output: The distance between the closest pair of points

1. d←∞



Algorithm

Algorithm ClosestPair (P )

• Input: A list P of n points p1(x1, y1), . . . pn(xn, yn)

• Output: The distance between the closest pair of points

1. d←∞

2. for i← 1 to n− 1 do



Algorithm

Algorithm ClosestPair (P )

• Input: A list P of n points p1(x1, y1), . . . pn(xn, yn)

• Output: The distance between the closest pair of points

1. d←∞

2. for i← 1 to n− 1 do

3. for j ← i + 1 to n do



Algorithm

Algorithm ClosestPair (P )

• Input: A list P of n points p1(x1, y1), . . . pn(xn, yn)

• Output: The distance between the closest pair of points

1. d←∞

2. for i← 1 to n− 1 do

3. for j ← i + 1 to n do

4. d← min(d,
√

(xi − xj)2 + (yi − yj)2



Algorithm

Algorithm ClosestPair (P )

• Input: A list P of n points p1(x1, y1), . . . pn(xn, yn)

• Output: The distance between the closest pair of points

1. d←∞

2. for i← 1 to n− 1 do

3. for j ← i + 1 to n do

4. d← min(d,
√

(xi − xj)2 + (yi − yj)2

5. return d



Algorithm

Algorithm ClosestPair (P )

• Input: A list P of n points p1(x1, y1), . . . pn(xn, yn)

• Output: The distance between the closest pair of points

1. d←∞

2. for i← 1 to n− 1 do

3. for j ← i + 1 to n do

4. d← min(d,
√

(xi − xj)2 + (yi − yj)2

5. return d

∑n−1
i=1



Algorithm

Algorithm ClosestPair (P )

• Input: A list P of n points p1(x1, y1), . . . pn(xn, yn)

• Output: The distance between the closest pair of points

1. d←∞

2. for i← 1 to n− 1 do

3. for j ← i + 1 to n do

4. d← min(d,
√

(xi − xj)2 + (yi − yj)2

5. return d

∑n−1
i=1∑n
j=i+1



Algorithm

Algorithm ClosestPair (P )

• Input: A list P of n points p1(x1, y1), . . . pn(xn, yn)

• Output: The distance between the closest pair of points

1. d←∞

2. for i← 1 to n− 1 do

3. for j ← i + 1 to n do

4. d← min(d,
√

(xi − xj)2 + (yi − yj)2

5. return d

∑n−1
i=1∑n
j=i+1

2



Algorithm

Algorithm ClosestPair (P )

• Input: A list P of n points p1(x1, y1), . . . pn(xn, yn)

• Output: The distance between the closest pair of points

1. d←∞

2. for i← 1 to n− 1 do

3. for j ← i + 1 to n do

4. d← min(d,
√

(xi − xj)2 + (yi − yj)2

5. return d

∑n−1
i=1∑n
j=i+1

2

(n−(i+1)+1)2
(n− i)2



Algorithm

Algorithm ClosestPair (P )

• Input: A list P of n points p1(x1, y1), . . . pn(xn, yn)

• Output: The distance between the closest pair of points

1. d←∞

2. for i← 1 to n− 1 do

3. for j ← i + 1 to n do

4. d← min(d,
√

(xi − xj)2 + (yi − yj)2

5. return d

∑n−1
i=1

2(n− i)



Algorithm

2(n− i)

= 2((n−1) + . . .+ 1) = 2 (n−1)n
2 = (n−1)n = n2−n = O(n2)

Algorithm ClosestPair (P )

• Input: A list P of n points p1(x1, y1), . . . pn(xn, yn)

• Output: The distance between the closest pair of points

1. d←∞

2. for i← 1 to n− 1 do

3. for j ← i + 1 to n do

4. d← min(d,
√

(xi − xj)2 + (yi − yj)2

5. return d

∑n−1
i=1

2(n− i)



Convex Set

Convex set: A set of points in the plane is called convex if for
any two points p and q in the set, the entire line segment with
the endpoints at p and q belongs to the set.



Convex Set

Convex set: A set of points in the plane is called convex if for
any two points p and q in the set, the entire line segment with
the endpoints at p and q belongs to the set.

Convex



Convex Set

Convex set: A set of points in the plane is called convex if for
any two points p and q in the set, the entire line segment with
the endpoints at p and q belongs to the set.

Convex Concave



Convex Set

Convex set: A set of points in the plane is called convex if for
any two points p and q in the set, the entire line segment with
the endpoints at p and q belongs to the set.

Convex Concave
• Straight line
• Triangle
• Rectangle
• Any convex polygon



Convex Hull

Convex hull: The convex hull of a set of n points in the plane
is the smallest convex polygon that contains all of them either
inside or on its boundary.



Convex Hull

Convex hull: The convex hull of a set of n points in the plane
is the smallest convex polygon that contains all of them either
inside or on its boundary.



Convex Hull

Convex hull: The convex hull of a set of n points in the plane
is the smallest convex polygon that contains all of them either
inside or on its boundary.



Convex Hull

Convex hull: The convex hull of a set of n points in the plane
is the smallest convex polygon that contains all of them either
inside or on its boundary.

Convex hull(formal): The convex hull of a set S of points is the
smallest convex set containing S.



Algorithm

A line segment connecting two points p1 and p2 of a set of n
points is a part of the convex hull’s boundary if and only if all
the other points of the set lie on the same side of the straight
line through these two points.

p1(x1, y1)

p2(x2, y2)



Algorithm

A line segment connecting two points p1 and p2 of a set of n
points is a part of the convex hull’s boundary if and only if all
the other points of the set lie on the same side of the straight
line through these two points.

p1(x1, y1)

p2(x2, y2)
ax + by = c

a = y2 − y1

b = x1 − x2

c = x1y2 − y1x2

Striaght line with two points
(x1, y1), (x2, y2)

y − y1 =
y2 − y1

x2 − x1
(x− x1)



Algorithm

A line segment connecting two points p1 and p2 of a set of n
points is a part of the convex hull’s boundary if and only if all
the other points of the set lie on the same side of the straight
line through these two points.

p1(x1, y1)

p2(x2, y2)
ax + by = c

a = y2 − y1

b = x1 − x2

c = x1y2 − y1x2

Do certain points lie on the same side of the line?
≡ Does ax+by−c have the same sign for each of these points?

Striaght line with two points
(x1, y1), (x2, y2)

y − y1 =
y2 − y1

x2 − x1
(x− x1)



Analysis

• There are n (n−1)
2 pairs of distinct points.



Analysis

• There are n (n−1)
2 pairs of distinct points.

• For each of these pairs, find the sign of ax+ by− c for each
of the other n− 2 points.



Analysis

• There are n (n−1)
2 pairs of distinct points.

• For each of these pairs, find the sign of ax+ by− c for each
of the other n− 2 points.

• No of checks = n (n−1)
2 (n− 2) = n3

2 −
3n2

2 + n



Analysis

• There are n (n−1)
2 pairs of distinct points.

• For each of these pairs, find the sign of ax+ by− c for each
of the other n− 2 points.

• No of checks = n (n−1)
2 (n− 2) = n3

2 −
3n2

2 + n

• Running time = O(n3)



Traveling Salesman Problem

TSP: Find the shortest tour through a given set of n cities that
visits each city exactly once before returning to the city where
it started.



Traveling Salesman Problem

TSP: Find the shortest tour through a given set of n cities that
visits each city exactly once before returning to the city where
it started.

b

dc

a
2

3

1

5
8 7



Traveling Salesman Problem

TSP: Find the shortest tour through a given set of n cities that
visits each city exactly once before returning to the city where
it started.

• Weighted graph
• Vertices are cities
• Edge weights are distances

b

dc

a
2

3

1

5
8 7



Traveling Salesman Problem

TSP: Find the shortest tour through a given set of n cities that
visits each city exactly once before returning to the city where
it started.

• Weighted graph
• Vertices are cities
• Edge weights are distances

A Hamiltonian circuit is a cycle that passes through all the ver-
tices of the graph exactly once.

b

dc

a
2

3

1

5
8 7



Traveling Salesman Problem

TSP: Find the shortest tour through a given set of n cities that
visits each city exactly once before returning to the city where
it started.

• Weighted graph
• Vertices are cities
• Edge weights are distances

A Hamiltonian circuit is a cycle that passes through all the ver-
tices of the graph exactly once.

TSP: Find the shortest Hamiltonian circuit of the graph.

b

dc

a
2

3

1

5
8 7



Hamiltonian Circuit

• A sequence of n+ 1 adjacent vertices vi0 , vi1 , . . . , vin−1, vi0 .
• First vertex and the last vertex are the same.
• The other n− 1 vertices are distinct.



Hamiltonian Circuit

• A sequence of n+ 1 adjacent vertices vi0 , vi1 , . . . , vin−1, vi0 .
• First vertex and the last vertex are the same.
• The other n− 1 vertices are distinct.

Choose one particular vertex as the start and end for all circuits.



Hamiltonian Circuit

• A sequence of n+ 1 adjacent vertices vi0 , vi1 , . . . , vin−1, vi0 .
• First vertex and the last vertex are the same.
• The other n− 1 vertices are distinct.

Choose one particular vertex as the start and end for all circuits.

1. Generate all the permutations of n− 1 intermediate cities,
2. Compute the tour lengths,
3. Find the shortest among them.



Example

b

dc

a
2

3

1

5
8 7



Example

a→ b→ c→ d→ a 2 + 8 + 1 + 7 = 18

b

dc

a b

dc

a
2

3

1

5
8 7



Example

a→ b→ c→ d→ a 2 + 8 + 1 + 7 = 18

a→ b→ d→ c→ a 2 + 3 + 1 + 5 = 11

b

dc

a b

dc

a
2

3

1

5
8 7



Example

a→ b→ c→ d→ a 2 + 8 + 1 + 7 = 18

a→ b→ d→ c→ a 2 + 3 + 1 + 5 = 11

a→ c→ b→ d→ a 5 + 8 + 3 + 7 = 23

b

dc

a b

dc

a
2

3

1

5
8 7



Example

a→ b→ c→ d→ a 2 + 8 + 1 + 7 = 18

a→ b→ d→ c→ a 2 + 3 + 1 + 5 = 11

a→ c→ b→ d→ a 5 + 8 + 3 + 7 = 23

b

dc

a

a→ c→ d→ b→ a 5 + 1 + 3 + 2 = 11

b

dc

a
2

3

1

5
8 7



Example

a→ b→ c→ d→ a 2 + 8 + 1 + 7 = 18

a→ b→ d→ c→ a 2 + 3 + 1 + 5 = 11

a→ c→ b→ d→ a 5 + 8 + 3 + 7 = 23

b

dc

a

a→ c→ d→ b→ a 5 + 1 + 3 + 2 = 11

a→ d→ b→ c→ a 7 + 3 + 8 + 5 = 23

b

dc

a
2

3

1

5
8 7



Example

a→ b→ c→ d→ a 2 + 8 + 1 + 7 = 18

a→ b→ d→ c→ a 2 + 3 + 1 + 5 = 11

a→ c→ b→ d→ a 5 + 8 + 3 + 7 = 23

b

dc

a

a→ c→ d→ b→ a 5 + 1 + 3 + 2 = 11

a→ d→ b→ c→ a 7 + 3 + 8 + 5 = 23

a→ d→ c→ b→ a 7 + 1 + 8 + 2 = 18

b

dc

a
2

3

1

5
8 7



Analysis

1. Generate all the permutations of n− 1 intermediate cities,
2. Compute the tour lengths,
3. Find the shortest among them.



Analysis

1. Generate all the permutations of n− 1 intermediate cities,
2. Compute the tour lengths,
3. Find the shortest among them.

• (n− 1)! permutations of n− 1 cities.
Running time = O(n!)



Analysis

1. Generate all the permutations of n− 1 intermediate cities,
2. Compute the tour lengths,
3. Find the shortest among them.

• (n− 1)! permutations of n− 1 cities.
Running time = O(n!)

a→ b→ c→ d→ a
2 + 8 + 1 + 7 = 18

b

dc

a b

dc

a
2

3

1

5
8 7

a→ d→ c→ b→ a
7 + 1 + 8 + 2 = 18



Analysis

1. Generate all the permutations of n− 1 intermediate cities,
2. Compute the tour lengths,
3. Find the shortest among them.

• (n− 1)! permutations of n− 1 cities.
Running time = O(n!)

a→ b→ c→ d→ a
2 + 8 + 1 + 7 = 18

b

dc

a b

dc

a
2

3

1

5
8 7

a→ d→ c→ b→ a
7 + 1 + 8 + 2 = 18

• Each permutation and its reverse count as two permutations.

• 1
2 (n− 1)! permutations of n− 1 cities.
But running time = O(n!)



Questions!

• State the characteristics of brute force strategy.



Questions!

• State the characteristics of brute force strategy.

• If the problem size of for finding the closest pair is n, what
is the size of the state space?



Questions!

• State the characteristics of brute force strategy.

• If the problem size of for finding the closest pair is n, what
is the size of the state space?

• What is the running time of brute force algorithm for finding
the convex hull?



Questions!

• State the characteristics of brute force strategy.

• If the problem size of for finding the closest pair is n, what
is the size of the state space?

• What is the running time of brute force algorithm for finding
the convex hull?

• What is Hamiltonian circuit?



Questions!

• State the characteristics of brute force strategy.

• If the problem size of for finding the closest pair is n, what
is the size of the state space?

• What is the running time of brute force algorithm for finding
the convex hull?

• What is Hamiltonian circuit?

• Generally brute force algorithms are not practical. Why?

Thank you.


	Titel II
	Brute Force, or ``Just Do It!''
	Problems
	Closest Pair of Points
	Algorithm
	Convex Set
	Convex Hull
	Algorithm
	Analysis
	Traveling Salesman Problem
	Hamiltonian Circuit
	Example
	Analysis
	Questions!

