Bipartite Matchings and Stable Marriage

Meghana Nasre CSE, IIT Madras

Faculty Development Program SSN College of Engineering, Chennai Jan. 27, 2016

Lets start with some fun..

- A chess board with 2 corners removed.
- An infinite supply of 2×1 tiles.

- A chess board with 2 corners removed.
- An infinite supply of 2×1 tiles.

Can you tile the chess board?

Some routine admin tasks..

- How does your dept. do project allotments?
- How does it do course allotments to faculty?
- What do we want to achieve while doing these allotments?

Have you heard of Joint Seat Allocation?

Have you heard of Joint Seat Allocation?

- Who are the participants?
 - 1. Students who have passed 12-th class.
 - 2. Programs at various institutions say cse-iitb, mech-nitk,

Have you heard of Joint Seat Allocation?

- Who are the participants?
 - 1. Students who have passed 12-th class.
 - 2. Programs at various institutions say cse-iitb, mech-nitk,
- A student ranks programs according to his/ her preference. *Rohan*: cse-iitb, cse-nitk, cse-iitp

Have you heard of Joint Seat Allocation?

- Who are the participants?
 - 1. Students who have passed 12-th class.
 - 2. Programs at various institutions say cse-iitb, mech-nitk,
- A student ranks programs according to his/ her preference. *Rohan*: cse-iitb, cse-nitk, cse-iitp
- A program also ranks students depending on:

	JEE Main	JEE Advanced
Rohan	32	447
Avanti	10	663

Have you heard of Joint Seat Allocation?

Common Counselling for IITs, NITs, IIITs, GFTIs - India 2015

- Who are the participants?
 - 1. Students who have passed 12-th class.
 - 2. Programs at various institutions say cse-iitb, mech-nitk,
- A student ranks programs according to his/ her preference. *Rohan*: cse-iitb, cse-nitk, cse-iitp
- A program also ranks students depending on:

	JEE Main	JEE Advanced
Rohan	32	447
Avanti	10	663

Scale of the problem: 34,000 odd seats across the country competed by 1.5 lakh students.

Have you heard of Joint Seat Allocation?

- Who are the participants?
 - 1. Students who have passed 12-th class.
 - 2. Programs at various institutions say cse-iitb, mech-nitk,
- A student ranks programs according to his/ her preference. *Rohan*: cse-iitb, cse-nitk, cse-iitp
- A program also ranks students depending on:

	JEE Main	JEE Advanced
Rohan	32	447
Avanti	10	663

- Scale of the problem: 34,000 odd seats across the country competed by 1.5 lakh students.
- No longer possible to do manual allotments!

What ties them together?

What ties them together?

A beautiful theory of matchings and stable marriage

- Quick introduction to graphs.
- Matchings in graphs.
- Bipartite matching algorithm.
- Stable matchings.

Introduction to graphs

Represent binary relations between objects

$$G = (V, E)$$
; $n = |V| = 6$, $m = |E| = 8$.
How large can *m* be?

Represent binary relations between objects

$$G = (V, E)$$
; $n = |V| = 6$, $m = |E| = 8$.
How large can *m* be?

Representation:

- Adj. lists O(m + n) space.
- Adj. matrix O(n²) space.

Represent binary relations between objects

$$G = (V, E)$$
; $n = |V| = 6$, $m = |E| = 8$.
How large can *m* be?

Representation:

- Adj. lists O(m + n) space.
- Adj. matrix $O(n^2)$ space.

Search methods:

- ► Breadth First Search.
- ► Depth First Search.

Matching in a graph

Matching in a graph

A matching M is a set of vertex disjoint edges.

Matching in a graph

A matching M is a set of vertex disjoint edges.

- **Goal:** compute a largest sized matching.
 - Question: is the above matching as large as possible?

Maximal vs. maximum matchings

- No more edges can be added.
- Size need not be the largest possible.

Maximal vs. maximum matchings

- No more edges can be added.
- Size need not be the largest possible.
- Largest possible size.
- ► Maximum ≥ maximal.

A path having alternate matched and unmatched edges.

A path having alternate matched and unmatched edges.

Is there any other alternating path?

A path having alternate matched and unmatched edges.

- Is there any other alternating path?
- Which paths are not alternating?

An alternating path starting and ending in free vertices.

An alternating path starting and ending in free vertices.

- How are augmenting paths useful?
- Properties of augmenting paths.

• If aug. path p is present \Rightarrow size of matching can be increased.

- If aug. path p is present \Rightarrow size of matching can be increased.
- $\blacktriangleright M' = M \oplus P.$

- If aug. path p is present \Rightarrow size of matching can be increased.
- $\blacktriangleright M' = M \oplus P.$

• If no aug. path w.r.t. $M \Rightarrow M$ is maximum.

• If no aug. path w.r.t. $M \Rightarrow M$ is maximum.

Proof (by contradiction)

- Suppose *M* does not admit any aug. path and still it is not maximum.
- Some other matching *M*' is maximum.

• If no aug. path w.r.t. $M \Rightarrow M$ is maximum.

Proof (by contradiction)

- Suppose *M* does not admit any aug. path and still it is not maximum.
- Some other matching *M*' is maximum.
- Consider $H = (V, M \oplus M')$.
 - Every vertex has degree at most 2.
 - *H* is a collection of paths and even cycles.
- Construct an aug. path w.r.t. *M*.

Maximum matching algorithm

Iterative improvement algorithm

Input: Graph G = (V, E). Output: A maximum sized matching M in G.

- 1. initialize M to be empty.
- 2. while there exists an aug. path p w.r.t. M

•
$$M = M \oplus p$$
.

3. return *M*.

Maximum matching algorithm

Iterative improvement algorithm

Input: Graph G = (V, E). Output: A maximum sized matching M in G.

- 1. initialize M to be empty.
- 2. while there exists an aug. path p w.r.t. M

•
$$M = M \oplus p$$
.

3. return *M*.

Two questions that need to be always asked:

1. correctness

Maximum matching algorithm

Iterative improvement algorithm

Input: Graph G = (V, E). Output: A maximum sized matching M in G.

- 1. initialize M to be empty.
- 2. while there exists an aug. path p w.r.t. M

•
$$M = M \oplus p$$
.

3. return *M*.

Two questions that need to be always asked:

1. correctness \checkmark .
Maximum matching algorithm

Iterative improvement algorithm

Input: Graph G = (V, E). Output: A maximum sized matching M in G.

- 1. initialize M to be empty.
- 2. while there exists an aug. path p w.r.t. M

•
$$M = M \oplus p$$
.

3. return M.

Two questions that need to be always asked:

- 1. correctness \checkmark .
- 2. complexity/ running time?

Maximum matching algorithm

Iterative improvement algorithm

Input: Graph G = (V, E). Output: A maximum sized matching M in G.

- 1. initialize M to be empty.
- 2. while there exists an aug. path p w.r.t. M

•
$$M = M \oplus p$$
.

3. return M.

Two questions that need to be always asked:

- 1. correctness \checkmark .
- 2. complexity/ running time?

How to efficiently compute an augmenting path?

Bipartite matching algorithm

When is G bipartite?

When is *G* bipartite?

- Vertices can be partitioned into 2 disjoint sets.
- G does not have any odd cycle.
- ► G is 2-colorable.

- Is this matching maximal?
- Are there augmenting paths with respect to M?

Aug. paths w.r.t. M: $\langle a_1, b_2 \rangle.$ $\langle a_5, b_5 \rangle.$ $\langle a_4, b_3, a_2, b_4 \rangle.$

Finding aug. paths – reachability in a modified graph.

This makes the bipartite case easy!

- ► Add dummy nodes *s* and *t*.
- Add edges from s to unmatched vertices in A.
- Add edges from unmatched vertices in *B* to *t*.
- Matched edges: $B \rightarrow A$.
- Unmatched edges: $A \rightarrow B$.

- Add dummy nodes *s* and *t*.
- Add edges from s to unmatched vertices in A.
- Add edges from unmatched vertices in *B* to *t*.
- Matched edges: $B \rightarrow A$.
- Unmatched edges: $A \rightarrow B$.

A directed path p from s to $t \leftrightarrow$ there exists an aug. path w.r.t. M.

Matching algorithm is Reduction

Iterative improvement algorithm

Input: Graph G = (V, E). Output: A maximum sized matching M in G.

- 1. initialize M to be empty.
- 2. while there exists an aug. path p w.r.t. M

•
$$M = M \oplus p$$
.

3. return *M*.

Iterative improvement algorithm

Input: Graph G = (V, E). Output: A maximum sized matching M in G.

- 1. initialize M to be empty.
- 2. while there exists an aug. path p w.r.t. M

•
$$M = M \oplus p$$
.

3. return M.

Running time?

1. How many iterations?

Iterative improvement algorithm

Input: Graph G = (V, E). Output: A maximum sized matching M in G.

- 1. initialize M to be empty.
- 2. while there exists an aug. path p w.r.t. M

•
$$M = M \oplus p$$
.

3. return M.

Running time?

1. How many iterations? O(n)

Iterative improvement algorithm

Input: Graph G = (V, E). Output: A maximum sized matching M in G.

- 1. initialize M to be empty.
- 2. while there exists an aug. path p w.r.t. M

•
$$M = M \oplus p$$
.

3. return *M*.

- 1. How many iterations? O(n)
- 2. How long does each iteration take?

Iterative improvement algorithm

Input: Graph G = (V, E). Output: A maximum sized matching M in G.

- 1. initialize M to be empty.
- 2. while there exists an aug. path p w.r.t. M

•
$$M = M \oplus p$$
.

3. return *M*.

- 1. How many iterations? O(n)
- 2. How long does each iteration take? O(m + n).

Iterative improvement algorithm

Input: Graph G = (V, E). Output: A maximum sized matching M in G.

- 1. initialize M to be empty.
- 2. while there exists an aug. path p w.r.t. M

•
$$M = M \oplus p$$
.

3. return *M*.

- 1. How many iterations? O(n)
- 2. How long does each iteration take? O(m + n).
- 3. Total running time: O(mn).

- ► The best known for both bipartite and general graphs is $O(m\sqrt{n})$ time algorithms.
- Algorithms on general graphs are significantly involved.

- ► The best known for both bipartite and general graphs is $O(m\sqrt{n})$ time algorithms.
- Algorithms on general graphs are significantly involved.
 Edmond's Blossom Shrinking algorithm. (Also the paper where the notion of polynomial time being efficient was formalized).
- ▶ Weighted matchings can also be computed in polynomial time.

- A chess board with 2 corners removed.
- An infinite supply of 2×1 tiles.
- Can you tile the chess board with dominoes?

- A chess board with 2 corners removed.
- An infinite supply of 2×1 tiles.
- Can you tile the chess board with dominoes?

- Cells of the board vertices.
- 2 cells are adjacent if a domino can cover it.

- A chess board with 2 corners removed.
- An infinite supply of 2×1 tiles.
- Can you tile the chess board with dominoes?

- Cells of the board vertices.
- 2 cells are adjacent if a domino can cover it.

- A chess board with 2 corners removed.
- An infinite supply of 2×1 tiles.
- Can you tile the chess board with dominoes?

- Cells of the board vertices.
- 2 cells are adjacent if a domino can cover it.

- A chess board with 2 corners removed.
- An infinite supply of 2×1 tiles.
- Can you tile the chess board with dominoes?

- Cells of the board vertices.
- 2 cells are adjacent if a domino can cover it.

32 red cells 30 yeL cells It is impossible to match all vertices, therefore no tiling exists!

Stable matching problem

▶ Introduced and studied by Gale and Shapley (1962).

- ▶ Introduced and studied by Gale and Shapley (1962).
- Context of college admissions.

- ▶ Introduced and studied by Gale and Shapley (1962).
- Context of college admissions.
- Wide range of applications in real world:
 - ► National Residency Matching Program (NRMP), USA.

- ▶ Introduced and studied by Gale and Shapley (1962).
- Context of college admissions.
- Wide range of applications in real world:
 - ► National Residency Matching Program (NRMP), USA.
 - Scottish Foundation Allocation (SFA), UK.

- ▶ Introduced and studied by Gale and Shapley (1962).
- Context of college admissions.
- Wide range of applications in real world:
 - ► National Residency Matching Program (NRMP), USA.
 - Scottish Foundation Allocation (SFA), UK.
 - Joint Seat Allocation (JoSA), India 2015.
 - • •

▶ Classical setting: marriage between *n* men and *n* women.

Input:

<i>m</i> ₁ :	w_1, w_2, w_3	w_1 :	m_3, m_2, m_1
<i>m</i> ₂ :	w_2, w_3, w_1	<i>w</i> ₂ :	m_2, m_1, m_3
<i>m</i> 3 :	w_3, w_1, w_2	<i>W</i> 3:	m_1, m_3, m_2

Goal: To compute a matching that is "optimal".

Input:

<i>m</i> ₁ :	w_1, w_2, w_3	w_1 :	m_3, m_2, m_1
<i>m</i> ₂ :	w_2, w_3, w_1	<i>w</i> ₂ :	m_2, m_1, m_3
<i>m</i> ₃ :	w_3, w_1, w_2	W3 :	m_1, m_3, m_2

Goal: To compute a matching that is "optimal".

Question: Is this a good matching?

Input:

<i>m</i> ₁ :	w_1, w_2, w_3	w_1 :	m_3, m_2, m_1
<i>m</i> ₂ :	w_2, w_3, w_1	<i>w</i> ₂ :	m_2, m_1, m_3
<i>m</i> ₃ :	w_3, w_1, w_2	W3 :	m_1, m_3, m_2

Goal: To compute a matching that is "optimal".

Question: Is this a good matching? pair (m_2, w_2) is bad!

Input:

m_1 :	w_1, w_2, w_3	<i>w</i> ₁ :	m_3, m_2, m_1
<i>m</i> ₂ :	w_2, w_3, w_1	<i>w</i> ₂ :	m_2, m_1, m_3
<i>m</i> 3 :	w_3, w_1, w_2	W3 :	m_1, m_3, m_2

Goal: To compute a matching that is "stable".

Input:

m_1 :	w_1, w_2, w_3	<i>w</i> ₁ :	m_3, m_2, m_1
<i>m</i> ₂ :	w_2, w_3, w_1	W ₂ :	m_2, m_1, m_3
<i>m</i> ₃ :	w_3, w_1, w_2	W3 :	m_1, m_3, m_2

Goal: To compute a matching that is "stable".

Input:

m_1 :	w_1, w_2, w_3	<i>w</i> ₁ :	m_3, m_2, m_1
<i>m</i> ₂ :	w_2, w_3, w_1	<i>W</i> ₂ :	m_2, m_1, m_3
<i>m</i> 3 :	w_3, w_1, w_2	W3 :	m_1, m_3, m_2

Goal: To compute a matching that is "stable".

unstable pair: A pair (m, w) not matched to each other, both of which prefer each other to their current partners in M.
Input:

<i>m</i> ₁ :	w_1, w_2, w_3	<i>w</i> ₁ :	m_3, m_2, m_1
<i>m</i> ₂ :	w_2, w_3, w_1	<i>w</i> ₂ :	m_2, m_1, m_3
<i>m</i> ₃ :	w_3, w_1, w_2	W3 :	m_1, m_3, m_2

Goal: To compute a matching that is "stable".

Does a stable marriage exist in any instance?

Input:

<i>m</i> ₁ :	w_1, w_2, w_3	<i>w</i> ₁ :	m_3, m_2, m_1
<i>m</i> ₂ :	w_2, w_3, w_1	<i>w</i> ₂ :	m_2, m_1, m_3
<i>m</i> ₃ :	w_3, w_1, w_2	W3 :	m_1, m_3, m_2

- Does a stable marriage exist in any instance?
- Is stable marriage unique?

Input:

<i>m</i> ₁ :	w_1, w_2, w_3	<i>w</i> ₁ :	m_3, m_2, m_1
<i>m</i> ₂ :	w_2, w_3, w_1	<i>w</i> ₂ :	m_2, m_1, m_3
<i>m</i> ₃ :	w_3, w_1, w_2	W3 :	m_1, m_3, m_2

- Does a stable marriage exist in any instance?
- Is stable marriage unique?
- Can it be computed efficiently?

<i>m</i> ₁ :	w_1, w_2, w_3	<i>w</i> ₁ :	m_3, m_2, m_1
<i>m</i> ₂ :	w_2, w_3, w_1	<i>w</i> ₂ :	m_2, m_1, m_3
<i>m</i> ₃ :	w_3, w_1, w_2	W3 :	m_1, m_3, m_2

Goal: To compute a matching that is "stable".

Does a stable marriage exist in any instance?

m_1 :	w_1, w_2, w_3	<i>w</i> ₁ :	m_3, m_2, m_1
<i>m</i> ₂ :	w_2, w_3, w_1	<i>w</i> ₂ :	m_2, m_1, m_3
<i>m</i> ₃ :	w_3, w_1, w_2	W3 :	m_1, m_3, m_2

- Does a stable marriage exist in any instance? Yes, always!
- Is stable marriage unique?

m_1 :	w_1, w_2, w_3	<i>w</i> ₁ :	m_3, m_2, m_1
<i>m</i> ₂ :	w_2, w_3, w_1	<i>W</i> ₂ :	m_2, m_1, m_3
<i>m</i> ₃ :	w_3, w_1, w_2	W3 :	m_1, m_3, m_2

- Does a stable marriage exist in any instance? Yes, always!
- Is stable marriage unique? No, there is a range of stable matchings; can be unique in some cases.
- Can it be computed efficiently?

m_1 :	w_1, w_2, w_3	<i>w</i> ₁ :	m_3, m_2, m_1
<i>m</i> ₂ :	w_2, w_3, w_1	<i>W</i> ₂ :	m_2, m_1, m_3
<i>m</i> ₃ :	w_3, w_1, w_2	W3 :	m_1, m_3, m_2

- Does a stable marriage exist in any instance? Yes, always!
- Is stable marriage unique? No, there is a range of stable matchings; can be unique in some cases.
- Can it be computed efficiently? Yes, in $O(n^2)$ time.

<i>m</i> ₁ :	w_1, w_2, w_3	<i>w</i> ₁ :	m_3, m_2, m_1
<i>m</i> ₂ :	w_2, w_3, w_1	W2 :	m_2, m_1, m_3
<i>m</i> 3 :	w_3, w_1, w_2	W3 :	m_1, m_3, m_2

Gale and Shapley algorithm

- set all men and women as unengaged.
- while there exists an unengaged man m
 - 1. *m* proposes to the most preferred woman *w* to whom he has not yet proposed.
 - 2. *w* accepts if either she is unengaged or she is engaged to *m*' and *w* prefers *m* to *m*'.

<i>m</i> ₁ :	w_1, w_2, w_3	<i>w</i> ₁ :	m_3, m_2, m_1
<i>m</i> ₂ :	w_2, w_3, w_1	W2 :	m_2, m_1, m_3
<i>m</i> 3 :	w_3, w_1, w_2	W3 :	m_1, m_3, m_2

Gale and Shapley algorithm

- set all men and women as unengaged.
- while there exists an unengaged man m
 - 1. *m* proposes to the most preferred woman *w* to whom he has not yet proposed.
 - 2. *w* accepts if either she is unengaged or she is engaged to *m'* and *w* prefers *m* to *m'*.

Questions:

Does the algorithm even terminate?

<i>m</i> ₁ :	w_1, w_2, w_3	<i>w</i> ₁ :	m_3, m_2, m_1
<i>m</i> ₂ :	w_2, w_3, w_1	W2 :	m_2, m_1, m_3
<i>m</i> 3 :	w_3, w_1, w_2	W3 :	m_1, m_3, m_2

Gale and Shapley algorithm

- set all men and women as unengaged.
- while there exists an unengaged man m
 - 1. *m* proposes to the most preferred woman *w* to whom he has not yet proposed.
 - 2. *w* accepts if either she is unengaged or she is engaged to *m'* and *w* prefers *m* to *m'*.

Questions:

- Does the algorithm even terminate?
- Why does it output a stable marriage?

<i>m</i> ₁ :	w_1, w_2, w_3	<i>w</i> ₁ :	m_3, m_2, m_1
<i>m</i> ₂ :	w_2, w_3, w_1	W ₂ :	m_2, m_1, m_3
<i>m</i> ₃ :	w_3, w_1, w_2	W3 :	m_1, m_3, m_2

Gale and Shapley algorithm

- set all men and women as unengaged.
- while there exists an unengaged man m
 - 1. *m* proposes to the most preferred woman *w* to whom he has not yet proposed.
 - 2. *w* accepts if either she is unengaged or she is engaged to *m'* and *w* prefers *m* to *m'*.

Questions:

- Does the algorithm even terminate?
- Why does it output a stable marriage?
- How does the ordering of men in the while loop matter?

- A surprisingly simple algorithm that is guaranteed to produce a stable matching.
- A rich structure underlying the problem.

- A surprisingly simple algorithm that is guaranteed to produce a stable matching.
- A rich structure underlying the problem.
 Has been dealt in two books one by Irving and Gusfield and a recent one by Manlove.
- National Residency Matching program one of the most important applications amongst several others.
- Pioneering work by Roth and Shapley won the 2012 Nobel prize for Economics.

- Matchings, definitions, augmenting/alternating paths.
- A template for finding matchings by iterative improvement.
- An efficient algorithm in the bipartite case.
- Stable marriage algorithm and properties.

Thank You!