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Lets start with some fun..

I A chess board with 2 corners removed.

I An infinite supply of 2× 1 tiles.

Can you tile the chess board?
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Some routine admin tasks..

I How does your dept. do project allotments?

I How does it do course allotments to faculty?

I What do we want to achieve while doing these
allotments?



Same problem at a larger scale..

Have you heard of Joint Seat Allocation?
Common Counselling for IITs, NITs, IIITs, GFTIs – India 2015

I Who are the participants?

1. Students who have passed 12-th class.
2. Programs at various institutions say cse-iitb, mech-nitk, . . . .

I A student ranks programs according to his/ her preference.
Rohan: cse-iitb, cse-nitk, cse-iitp

I A program also ranks students depending on:
JEE Main JEE Advanced

Rohan 32 447

Avanti 10 663

I Scale of the problem: 34,000 odd seats across the country
competed by 1.5 lakh students.

I No longer possible to do manual allotments!
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Outline of talk

I Quick introduction to graphs.

I Matchings in graphs.

I Bipartite matching algorithm.

I Stable matchings.



Introduction to graphs



Why graphs?

Represent binary relations between objects

G = (V ,E ) ; n = |V | = 6, m = |E | = 8.
How large can m be?

Representation:

I Adj. lists – O(m + n) space.

I Adj. matrix – O(n2) space.

Search methods:

I Breadth First Search.

I Depth First Search.
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Matching in a graph



Matching in a graph

A matching M is a set of vertex disjoint edges.

I Goal: compute a largest sized matching.

I Question: is the above matching as large as possible?
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Maximal vs. maximum matchings

maximal

I No more edges can be added.

I Size need not be the largest
possible.

maximum

I Largest possible size.

I Maximum ≥ maximal.
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Using augmenting paths

Berge’s Theorem

I If aug. path p is present ⇒ size of matching can be increased.

I M ′ = M ⊕ P.
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Using augmenting paths

Berge’s Theorem

I If no aug. path w.r.t. M ⇒ M is maximum.

Proof (by contradiction)

I Suppose M does not admit any aug. path and still it is not
maximum.

I Some other matching M ′ is maximum.
I Consider H = (V ,M ⊕M ′).

I Every vertex has degree at most 2.
I H is a collection of paths and even cycles.

I Construct an aug. path w.r.t. M.
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Maximum matching algorithm

Iterative improvement algorithm

Input: Graph G = (V ,E ).
Output: A maximum sized matching M in G .

1. initialize M to be empty.

2. while there exists an aug. path p w.r.t. M
I M = M ⊕ p.

3. return M.

Two questions that need to be always asked:

1. correctness X.

2. complexity/ running time?

How to efficiently compute an augmenting path?
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Bipartite matching algorithm



Bipartite graphs

When is G bipartite?

I Vertices can be partitioned into
2 disjoint sets.

I G does not have any odd cycle.

I G is 2-colorable.
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Finding aug. path in bipartite graphs

I Is this matching maximal?

I Are there augmenting paths
with respect to M?



Finding aug. path in bipartite graphs

Aug. paths w.r.t. M:

I 〈a1, b2〉.
I 〈a5, b5〉.
I 〈a4, b3, a2, b4〉.

Finding aug. paths – reachability in a modified graph.

This makes the bipartite case easy!
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Finding aug. path in bipartite graphs

I Add dummy nodes s and t.

I Add edges from s to
unmatched vertices in A.

I Add edges from unmatched
vertices in B to t.

I Matched edges: B → A.

I Unmatched edges: A→ B.

A directed path p from s to t ↔ there exists an aug. path w.r.t. M.
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Maximum matching in bipartite graph

Iterative improvement algorithm

Input: Graph G = (V ,E ).
Output: A maximum sized matching M in G .

1. initialize M to be empty.

2. while there exists an aug. path p w.r.t. M
I M = M ⊕ p.

3. return M.

Running time?

1. How many iterations? O(n)

2. How long does each iteration take? O(m + n).

3. Total running time: O(mn).
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Efficient matching algorithms

I The best known for both bipartite and general graphs is
O(m

√
n) time algorithms.

I Algorithms on general graphs are significantly involved.

Edmond’s Blossom Shrinking algorithm. (Also the paper
where the notion of polynomial time being efficient was
formalized).

I Weighted matchings can also be computed in polynomial time.
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I A chess board with 2 corners removed.

I An infinite supply of 2× 1 tiles.

I Can you tile the chess board with
dominoes?

I Cells of the board – vertices.

I 2 cells are adjacent if a domino can
cover it.

It is impossible to match all vertices, therefore no tiling exists!
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Stable matching problem



A bit of context..

I Introduced and studied by Gale and Shapley (1962).

I Context of college admissions.

I Wide range of applications in real world:

I National Residency Matching Program (NRMP), USA.
I Scottish Foundation Allocation (SFA), UK.
I Joint Seat Allocation (JoSA), India 2015.
I · · ·

I Classical setting: marriage between n men and n women.
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Setting

Input:

m1 : w1,w2,w3

m2 : w2,w3,w1

m3 : w3,w1,w2

w1 : m3,m2,m1

w2 : m2,m1,m3

w3 : m1,m3,m2

Goal: To compute a matching that is “optimal”.

Question: Is this a good matching? pair (m2,w2) is bad!
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unstable pair: A pair (m,w) not matched to each other, both of
which prefer each other to their current partners in M.
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Goal: To compute a matching that is “stable”.

I Does a stable marriage exist in any instance?

I Is stable marriage unique?

I Can it be computed efficiently?
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Stable marriage algorithm

m1 : w1,w2,w3

m2 : w2,w3,w1

m3 : w3,w1,w2

w1 : m3,m2,m1

w2 : m2,m1,m3

w3 : m1,m3,m2

Gale and Shapley algorithm

I set all men and women as unengaged.
I while there exists an unengaged man m

1. m proposes to the most preferred woman w to whom he has
not yet proposed.

2. w accepts if either she is unengaged or she is engaged to m′

and w prefers m to m′.

Questions:

I Does the algorithm even terminate?

I Why does it output a stable marriage?

I How does the ordering of men in the while loop matter?
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and w prefers m to m′.

Questions:

I Does the algorithm even terminate?

I Why does it output a stable marriage?

I How does the ordering of men in the while loop matter?
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Stable marriage algorithm

I A surprisingly simple algorithm that is guaranteed to produce
a stable matching.

I A rich structure underlying the problem.

Has been dealt in two books – one by Irving and Gusfield and
a recent one by Manlove.

I National Residency Matching program – one of the most
important applications amongst several others.

I Pioneering work by Roth and Shapley won the 2012 Nobel
prize for Economics.
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Summary

I Matchings, definitions, augmenting/alternating paths.

I A template for finding matchings by iterative improvement.

I An efficient algorithm in the bipartite case.

I Stable marriage algorithm and properties.



Thank You!


