
SSN COLLEGE OF ENGINEERING

B.E. (Computer Science and Engineering) Semester 4
Unit Test: 1 (23 January 2017)

Time: 8.00–9.30 CS6402 Design and Analysis of Algorithms Max marks: 50

Part A 10 × 2 = 20
Answer all questions.

1. What is an algorithm? (CO1)

An algorithm is a composition (sequence) of unambiguous instructions for solving a problem, i.e.,
for obtaining a required output for any legitimate input in a finite amount of time.

2. State the characteristic of basic operations. Which of the following are not basic operations?
add, multiply, power, logical or. (CO1)

A basic operation is executed in constant amount of time. It does not depend on the input
size. x power n is not a basic operation. It depends on n.

3. Find the order of growth of the function 10n2 + 4n + 2 with suitable values for c and n0.
(CO3)

Method 1:

10n2 + 4n+ 2 ≤ 11n2

= 10n2 + n2

4n+ 2 ≤ n2

4

n
+

2

n2
≤ 1

holds for n0 = 5. Thus, one of the possible values are c = 11 and n0 = 5.

10n2 + 4n+ 2 ≤ 10n2 + 4n2 + 2n2

= 16n2

holds for n0 = 1. Thus, one of the possible values are c = 16 and n0 = 1.

Method 2:

lim
n→∞

10n2 + 4n+ 2

n2
= lim

n→∞
10 +

4

n
+

2

n2
= 10

10n2 + 4n+ 2 = O(n2)

4. If f(x) =
x3

2
and g(x) = 37x2 + 120x+ 17, show that g = O(f), but f 6= O(g). (CO3)

lim
n→∞

g(x)

f(x)
=

37x2 + 120x+ 17

x3
=

37

x
+

120

x2
+

17

x3
= 0

g(x) = O(f(x))

1

lim
n→∞

f(x)

g(x)
=

x3

37x2 + 120x+ 17
=

3x2

74x+ 120
=

6x

74
=∞

f(x) = Ω(g(x))

5. Find the order of growth of the sum
∑n

1 (i2 + 1)2 (CO3)

n∑
i=1

i4 =
1

30
n(n+ 1)(2n+ 1)(3n2 + 3n− 1) = O(n5)

6. How many times the body of the inner loop is executed? What is the order of growth of the
algorithm? (CO3)

for i← 1 to m
for j ← 1 to n

c[i, j]← a[i, j] + b[i, j]
end

end

mn times, Time complexity = O(mn)

7. Find the time complexity of sum(a) where a is a list. (CO3)

Algorithm: sum a[0 : n− 1]

if a = [] then return 0
return a[0] + sum a[1:n-1]

T (n) = T (n− 1) + 1

T (n) = n

8. Solve the recurrence relation: (CO3)

T (n) =

{
1 if n = 1

T (n− 1) + 1 if n > 1

T (n) = 1 + T (n− 1)

= 1 + 1 + T (n− 2) = 2 + T (n− 2)

= 2 + 1 + T (n− 3) = 3 + T (n− 3)

· · ·
= n− 1 + T (1)

= n− 1 + 1

T (n) = n

9. Prove that any comparison sort algorithm requires Ω(n log n) comparisons in the worst case.
(CO1)

2

10. For each of the following functions, indicate how much the functions value will change if its
argument is increased fourfold. (CO3)
a. log2 n b.

√
n c. n d. n2 e. n3 f. 2n

n log2 n
√
n n n2 n3 2n

4n
log2 4n

log2 n

√
4n
√
n

4n

n

(4n)2

n2
(4n)3

n3
24n

2n

4n
log2 4n

log2 n
2 4 16 64 23n

Part B 6 × 5 = 30
Answer any five questions.

11. Consider two algorithms A and B for solving the same problem running on two machines
1 and 2. Machine 1 executes 109 (1 billion) instructions per second, and machine 2 executes
107 (10 million) instructions per second. Algorithm A requires 2n2 instructions and runs on
machine 1; algorithm B requires 50n log10 n instructions and runs on machine 2. (CO1)

(a) Calculate the running time of the two algorithms for inputs of sizes 100, 1000, 10000.
(3)

(b) Which is better — algorithm A on machine 1, or algorithm B on machine 2? Why? (3)

n Algorithm A Algorithm B
(Slow algorithm 2n2 (Fast algorithm 50n log n

on fast machine 109 ips) on slow machine 107 ips)

103
2× (103)2

109
= 2× 10−3

50× 103 log 103

107
= 15× 10−3

104
2× (104)2

109
= 0.2

50× 104 log 104

107
= 0.2

105
2× (105)2

109
= 20

50× 105 log 105

107
= 0.25

Algorithm B on machine 2 is better than algorithm A on machine 1.

12. (a) Design a brute-force algorithm for finding the two closest points in a set of n points (the
closest-pair problem). (CO2, 3)

3

Algorithm: ClosestPair P

Input: A list P of n points P1(x1, y1), . . . , Pn(xn, yn)

Output: Indices k1, k2 of the closest pair of points {Pk1, Pk2}

1 dmin←∞
2 for i← 1 to n− 1 do //

∑n−1
i=1

3 for j = i+ 1 to n do //
∑n

j=i+1

4 d←
√

(xi − xj)2 + (yi − yj)2 // 2

5 if d < dmin then
6 dmin, k1, k2← d, i, j
7 end
8 end
9 end

10 return k1, k2

(b) Analyze the running time of the algorithm. (CO3, 3)

Running time =
n−1∑
i=1

n∑
j=i+1

2

=2
n−1∑
i=1

(n− (i+ 1) + 1)

=2
n−1∑
i=1

(n− i)

=2
n−1∑
i=1

n− 2
n−1∑
i=1

i

=2n(n− 1)− 2(n− 1)n/2

=2n(n− 1)− (n− 1)n

=(2n− n)(n− 1)

=n(n− 1)

=n2 − n
=O(n2)

13. Given two n×nmatricesA andB, write an algorithm for computing their product C = AB,
and find its time efficiency. (CO2, CO3, 6)

4

Algorithm: MatMult a, b

Input: a and b are n× n matrices
Output: c = a× b

1 for i← 1 to n do
2 for j ← 1 to n do
3 c[i, j] = 0

4 for k ← 1 to n do
5 c[i, j]← c[i, j] + a[i, k] ∗ b[k, j]
6 end
7 end
8 end
9 return c

Body of the innermost loop is executed

n∑
i=1

n∑
j=1

n∑
k=1

1 = n3

times. Time complexity = O(n3)

14. (a) Design an algorithm to merge two sorted lists. Analyze its running time. (CO2, CO3, 3)

Algorithm: Merge a, b

Input: a[0:n1-1] and b[0:n2-1] are sorted lists of items.
Output: A sorted list of all items in a and b.

1 if a = [] then return b
2 if b = [] then return a
3 if a[0] < b[0] then
4 return a[0]: Merge a[1:n1-1], b
5 else
6 return b[0]: Merge a, b[1:n2-1]
7 end

Passes over all the items of a and b once. Let n = len(a) + len(b). Running time = O(n)

(b) Design an algorithm to sort a list, dividing it into two almost equal sublists, sorting
each sublist recursively, and then merging the two sorted sublists. Analyze the running
time of this sort algorithm. (CO2, CO3, 3)

5

Algorithm: MergeSort a

Input: a[0:n-1] is a list of comparable items.
Output: A sorted list of items in a.

1 if #a = 0 or #a = 1 then return a
2 m← b#a/2c
3 return Merge (MergeSort a[0:m]), (MergeSort a[m+1:n-1])

15. Derive a recurrence relation for Fibonacci series algorithm; also, carry out the time complex-
ity. (CO3,6)

Algorithm: Fib n

Input: n is a non-negative integer.
Output: F (n)

1 if n = 0 then return 0
2 if n = 1 then return 1
3 return Fib(n-1) + Fib(n-2)

T (n) = T (n− 1) + T (n− 2) + 1

T (n)− T (n− 1)− T (n− 2)− 1 = 0

(T (n) + 1)− (T (n− 1) + 1)− (T (n− 2) + 1) = 0

F (n)− F (n− 1− F (n− 2) = 0 where F (n) = T (n) + 1

This is a second-order homogeneous linear recurrence with constant coefficients. Its charac-
teristic equation is

r2 − r − 1 = 0

with roots

r1,2 =
1±
√

5

2

The solution is

F (n) = α

(
1 +
√

5

2

)n

+ β

(
1−
√

5

2

)n

Solve for α, β, with F (0) = 0 and F (1) = 1. We get

α =
1
√

5
, β = −

1
√

5

Thus

F (n) =
1
√

5

(
1 +
√

5

2

)n

−
1
√

5

(
1−
√

5

2

)n

=
1
√

5
(φn − φ̂n)

6

and

T (n) = F (n)− 1 =
1
√

5
(φn − φ̂n)− 1 = O(φn)

16. Analyze the best-case, the worst-case, and the average-case running times of the linear
search algorithm for an array a of size n? (CO3, 2+2+2)

Algorithm: LinearSearch a[0 : n− 1], x

Input: Array a[0 : n− 1] of n numbers, and a target x to search for.
Output: i such that a[i] = x if x is in the array; i = n, otherwise.

1 i← 0 until i = n or a[i] = x do // 1 to n+ 1 times

2 i← i+ 1

3 end
4 return i

Worst case occurs when the target is not found.

T (n) = n+ 1 = O(n)

Best case occurs when the target is the 0th item.

T (n) = 1 = O(1)

Average case: The target is equally likely to be in any of the n positions: 0, 1, . . ., n− 1.

P (0) = P (1) = . . . = P (n− 1) =
1

n

On an average, the number of iterations

= P (0)× 0 + P (1)× 1 + P (2)× 2 + . . .+ P (n− 1)× (n− 1)

=
1

n
× (1 + 2 + . . .+ (n− 1))

=
1

n
×

(n− 1)n

2

=
n− 1

2

= O(n)

7

17. (a) Solve the recurrence relation (CO3, 3)

T (n) =

2T

(
n

2

)
+ n if n > 1

1 if n = 1

(b) What is the order of growth of T (n)? (CO3, 3)

T (n) =

2T

(
n

2

)
+ n if n > 1

1 if n = 1

Assume that n is a power of 2, say, n = 2h, and hence, h = log2 n.

T (n) = n+ 2T
(n

2

)
= n+ 2

[n
2

+ 2T
(n

22

)]
= n+ n+ 22T

(n
22

)
= 2n+ 22T

(n
22

)
= 2n+ 22

[n
22

+ 2T
(n

23

)]
= 2n+ n+ 23T

(n
23

)
= 3n+ 23T

(n
23

)
. . .

= nh+ 2hT
(n

2h

)
= nh+ 2hT (1)

= n log2 n+ n

= O(n log n)

18. Design an algorithm to find all the common elements in two sorted lists of numbers. For
example, for the lists 2, 5, 5, 5 and 2, 2, 3, 5, 5, 7, the output should be 2, 5, 5. What is the
maximum number of comparisons your algorithm makes if the lengths of the two given lists
are m and n, respectively? (CO2, CO3, 3+3)

8

Algorithm: Common a, b

Input: a[0:n1-1] and b[0:n2-1] are sorted lists of items.
Output: c is a list of common items in a and b.

1 if a = [] or b = [] then return []
2 if a[0] = b[0] then
3 return a[0] + Common a[1:], b[1:]
4 else if a[0] < b[0] then
5 return Common a[1:], b
6 else
7 return Common a, b[1:]
8 end

Passes over all the items of a and b once. Let n = len(a) + len(b). Running time = (n)

Prepared by

V Balasubramanian, R S Milton

Reviewed by

HoD, CSE

9

