
SSN COLLEGE OF ENGINEERING

B.E. (Computer Science and Engineering) Semester 4
Unit Test: 1 (28 January 2013)

Time: 8.00–9.30 CS2251 Design and Analysis of Algorithms Max marks: 50

Part A 5 × 1 = 5
Answer all questions (true or false).

1. 101n + 5 ∈ O(n2) true

2. 100n + 5 ∈ Ω(n2) false

3. n ∈ o(6n) true

4. f(n) ∈ Θ(g(n)) ≡ g(n) ∈ Θ(f(n)) true

5. Θ(g(n)) = O(g(n)) ∩ Ω(g(n)) true

Part B 10 × 2 = 20
Answer all questions.

6. List the important qualities of algorithms.
precise, executable, finite

7. Compare the order of growth of n! and 2n.

8. Find the order of growth of the function 10n2 + 4n + 2 with suitable values for c and n0.
O(n2), c = 16, n0 = 0

9. If f(x) =
x3

2
and g(x) = 37x2 + 120x + 17, show that g = O(f), but f 6= O(g).

g(x) = 37x2 + 120x + 17 ≤ 174x3 = 348
x3

2
= 348f(x)

f(x)
x3

2
≤ cx2 ⇒ x ≤ 2c

10. If T (n) = n2

2 , then what is T (2n)?

T (2n) =
(2n)2

2
=

4n2

2
= 2n2

1

11. Find the order of growth of the sum
∑n

1 (i2 + 1)2

n∑

1

(i2 + 1)2

=

n∑

1

i4 + 2i2 + 1

=
n∑

1

i4 + 2
n∑

1

i2 +
n∑

1

1

=

〈
n∑

i=1

ik ≈
1

k + 1
nk+1

〉

1

5
n5 +

1

3
n3 + n

=O(n5)

12. How many times the body of the inner loop is executed?

for i← 1 to m
for j ← 1 to n

c[i, j]← a[i, j] + b[i, j]
end

end

mn

13. Find the time complexity of sum(a) using step count method.

Algorithm: sum(a)
s← 0, i← 1
while i ≤ n do

s← s + a[i]
i← i + 2

end

14. Solve the recurrence relation:

T (n) =

{
1 if n = 1

T (n− 1) + 1 if n > 1

T (n) = n

15. Arrange these functions in increasing order of asymptotic growth: cn, n log n, n2, log n, n3

log n, n log n, n2, n3, cn

Part C 5 × 5 = 25
Answer any five questions.

2

16. Consider two algorithms A and B for solving the same problem running on two machines
1 and 2. Machine 1 executes 109 (1 billion) instructions per second, and machine 2 executes
107 (10 million) instructions per second. Algorithm A requires 2n2 instructions and runs on
machine 1; algorithm B requires 50n log10 n instructions and runs on machine 2.

(a) Calculate the running time of the two algorithms for inputs of sizes 100, 1000, 10000.
2n2

109
50n log n

107

100
2× 100× 100

109
=

2

105
50× 100× 2

107
=

1

103

1000
2× 1000× 1000

109
=

2

103
50× 1000× 3

107
=

15

103

10,000
2× 10000× 10000

109
=

2

10

50× 10000× 4

107
=

2

10
(b) Which is better — algorithm A on machine 1, or algorithm B on machine 2? Why?

Algorithm B. After 10000, its running time is smaller. It grows slowly.

17. (a) Write and solve the recurrence relation for computing factorial of a number.

Algorithm: fact (n)

if n = 0 then 1 else n * (fact n-1)

T (n) =

{
1 if n = 0

T (n− 1) + 1 if n > 0

T (n) = 1 + T (n− 1)

= 〈T (n− 1) = 1 + T (n− 2)〉
1 + 1 + T (n− 2)

= 2 + T (n− 2)

. . .

= n + T (0)

= n + 1

= O(n)

(b) Write an iterative algorithm for the same, and calculate the running time.

Algorithm: fact (n)

f, i← 1, 0
-- f = i!

until i = n do
f, i← f * (i+1), i+1

end

Loop iterates n times. Basic step: multiply. T (n) = O(n)

3

18. Define big-Oh, big-Omega, and big-Theta notations. Give an example for each.

Big-Oh: definition, graph, example

f(n) = O(g(n)) ≡ There exist constants c and n0 such that

f(n) ≤ cg(n) for all n ≥ n0

Big-Omega: definition, graph, example

f(n) = Ω(g(n)) ≡ There exist constants c and n0 such that

f(n) ≥ cg(n) for all n ≥ n0

Big-Theta: definition, graph, example

f(n) = Θ(g(n)) ≡ There exist constants c1, c2, n0 such that

c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0

19. Analyse the best-case, the worst-case, and the average-case running times of the algorithm
for an array a of size n?

Algorithm: LinearSearch (a, x)

i← 0

while i 6= n and a[i] 6= x do i← i + 1

return i

Worst-case: x is not in a. The loop terminates by i = n. Loop iterates n times. T (n) = n

Best-case: x = a[0]. The loop terminates by a[0] = x. Loop does not iterate at all. T (n) = 0.
Average-case: x is probable in any position from 0 to n− 1 with probability 1

n . The loop, on
average, iterates (1 + 2 + . . . + (n− 1))/n = (n− 1)n/2 times. T (n) = (n− 1)/2.

20. (a) Solve the recurrence relation

T (n) =





2T

(
n

2

)
+ n if n > 1

1 if n = 1

4

Let n = 2h. Then h = log2 n

T (n) = n + 2T
(n

2

)

=
〈
T
(n

2

)
=

n

2
+ T

(n

22

)〉

n + 2
[n

2
+ 2T

(n

22

)]

= n + n + 22T
(n

22

)

= 2n + 22T
(n

22

)

. . .

= nh + 2hT
(n

2h

)

=
〈
n = 2h

〉

nh + 2hT (1)

=
〈
h = log n, n = 2h, T (1) = 1

〉

= n log2 n + n

= O(n log n)

(b) Solve it using Master Theorem.
In T (n) = aT

(
n
b

)
+ nc,

a = 2

b = 2, c = 1, bc = 21 = 2

a = bc

By Master Theorem

T (n) = Θ(nc log n) = Θ(n1 log n)

(c) What is the order of growth of T (n)?

21. A binary search is given as input a sorted array a[1..n] and the output is an index i partition-
ing the array into two subarrays, a[1..i] < k and k ≤ a[i+1..n] where k is the search key. It
maintains three subarrays a[1..i-1] < k, a[i..j], and k ≤ a[j+1..n] where the search is restricted
to a[i..j]. When a[i..j] becomes empty, the search terminates.

(i) Choose an index mid in the interval i..j that is close to the middle of the interval. i..j is
not empty.

5

i ≤ j

≡ 2i ≤ i + j ≤ 2j

≡ i ≤ i + j

2
≤ j

≡
〈
m =

i + j

2

〉

≡ i ≤ m ≤ j

≡ i ≤ m,m ≤ j

≡ 〈bmc ≤ m < bmc+ 1〉
≡ i ≤ m < bmc+ 1, bmc ≤ m ≤ j

≡ i < bmc+ 1, bmc ≤ j

≡ i ≤ bmc, bmc ≤ j

≡ i ≤ bmc ≤ j

(ii) How is the search interval i..j reduced depending on whether a[m] < k or k ≤ a[m]?

[m] < k

≡ [1..m] < k

≡ 〈invariant : [1..i− 1] < k,progress〉
[1..i− 1] = [1..m]

≡ [i..j] = [m + 1..j]

k ≤ [m]

≡ k ≤ [m..n]

≡ 〈invariant : k ≤ [j + 1..n],progress〉
[j + 1..n] = [m..n]

≡ [i..j] = [i..m− 1]
(iii) What is the key operation of the algorithm? Write the recurrence equation for the run-

ning time of the algorithm.
Key step: compare.

T (n) =





1 if n = 1

T

(
n

2

)
+ 1 if n > 1

22. A divide-and-conquer algorithm is called with an input of size n. It does a work of f(n); it
divides the problem into a subproblems and to each it passes an input of size n

b . The running
time of the algorithm is given by

T (n) = aT
(n
b

)
+ f(n)

(i) Draw the recursion tree for the algorithm and find an expression for the running time
T (n) of the algorithm, summing the running times of all the recursive calls of the algo-
rithm.

6

f(n)

f
(
n
b

)
f
(
n
b

)
f
(
n
b

)

f(n
b2)f(

n
b2)f(n

b2) f(n
b2)f(

n
b2)f(n

b2) f(n
b2)f(

n
b2)f(n

b2)

f(n
b3)f(

n
b3)f(n

b3) f(n
b3)f(

n
b3)f(n

b3)

f(n
bh
)f(n

bh
)f(n

bh
)

...

f(n
bh
)f(n

bh
)f(n

bh
)

...

a
f(n)

af(nb)

a2f(n
b2)

a3f(n
b3)

ahf(n
bh
)

T (n)

= f(n) + af
(n
b

)
+ a2f

(n

b2

)
+ a3f

(n

b3

)
+ . . . + ahf

(n

bh

)

=

h∑

i=0

aif
(n
bi

)

where h = logb n is the height of the tree.
(ii) Assuming f(n) = nc, rewrite the expression for the running time T (n). In the divide

and conquer recurrences, if f(n) is a polynomial nc,

T (n) =
h∑

i=0

ai
(n
bi

)c

=
h∑

i=0

ai
(
nc

bic

)

=

h∑

i=0

(
ai

bic

)
nc

= nc
h∑

i=0

(a

bc

)i

Good luck is another name for tenacity of purpose.
(Ralph Waldo Emerson)

Prepared by

S Kavitha, R S Milton

Reviewed by

HoD, CSE

7

