SSN COLLEGE OF ENGINEERING B.E. (Computer Science and Engineering) Semester 4 Unit Test: 1 (28 January 2013)

Part B $10 \times 2 = 20$ Answer *all* questions.

- 6. List the important qualities of algorithms. precise, executable, finite
- 7. Compare the order of growth of $n!$ and $2n$.
- 8. Find the order of growth of the function $10n^2 + 4n + 2$ with suitable values for c and n_0 . $O(n^2)$, $c = 16$, $n_0 = 0$

9. If
$$
f(x) = \frac{x^3}{2}
$$
 and $g(x) = 37x^2 + 120x + 17$, show that $g = O(f)$, but $f \neq O(g)$.
\n
$$
g(x) = 37x^2 + 120x + 17 \le 174x^3 = 348\frac{x^3}{2} = 348f(x)
$$
\n
$$
f(x)\frac{x^3}{2} \le cx^2 \Rightarrow x \le 2c
$$

10. If
$$
T(n) = \frac{n^2}{2}
$$
, then what is $T(2n)$?
\n
$$
T(2n) = \frac{(2n)^2}{2} = \frac{4n^2}{2} = 2n^2
$$

11. Find the order of growth of the sum $\sum_1^n (i^2 + 1)^2$

$$
\sum_{1}^{n} (i^{2} + 1)^{2}
$$
\n
$$
= \sum_{1}^{n} i^{4} + 2i^{2} + 1
$$
\n
$$
= \sum_{1}^{n} i^{4} + 2 \sum_{1}^{n} i^{2} + \sum_{1}^{n} 1
$$
\n
$$
= \left\langle \sum_{i=1}^{n} i^{k} \approx \frac{1}{k+1} n^{k+1} \right\rangle
$$
\n
$$
\frac{1}{5}n^{5} + \frac{1}{3}n^{3} + n
$$
\n
$$
= O(n^{5})
$$

12. How many times the body of the inner loop is executed?

$$
\begin{array}{l}\n\textbf{for } i \leftarrow 1 \textbf{ to } m \\
\textbf{for } j \leftarrow 1 \textbf{ to } n \\
\quad c[i, j] \leftarrow a[i, j] + b[i, j] \\
\textbf{end} \\
\textbf{end}\n\end{array}
$$

mn

13. Find the time complexity of $sum(a)$ using step count method.

Algorithm: sum(a) $s \leftarrow 0, i \leftarrow 1$ **while** $i \leq n$ **do** $s \leftarrow s + a[i]$ $i \leftarrow i + 2$ **end**

14. Solve the recurrence relation:

$$
T(n) = \begin{cases} 1 & \text{if } n = 1\\ T(n-1) + 1 & \text{if } n > 1 \end{cases}
$$

 $T(n) = n$

15. Arrange these functions in increasing order of asymptotic growth: c^n , $n \log n$, n^2 , $\log n$, n^3 $\log n, n \log n, n^2, n^3, c^n$

16. Consider two algorithms A and B for solving the same problem running on two machines 1 and 2. Machine 1 executes 10^9 (1 billion) instructions per second, and machine 2 executes $10⁷$ (10 million) instructions per second. Algorithm A requires $2n²$ instructions and runs on machine 1; algorithm B requires $50n \log_{10} n$ instructions and runs on machine 2.

(a) Calculate the running time of the two algorithms for inputs of sizes 100, 1000, 10000.

- (b) Which is better algorithm A on machine 1, or algorithm B on machine 2? Why? Algorithm B. After 10000, its running time is smaller. It grows slowly.
- 17. (a) Write and solve the recurrence relation for computing factorial of a number.

Algorithm: fact (n)

if $n = 0$ **then** 1 **else** $n *$ (fact n-1)

$$
T(n) = \begin{cases} 1 & \text{if } n = 0\\ T(n-1) + 1 & \text{if } n > 0 \end{cases}
$$

$$
T(n) = 1 + T(n - 1)
$$

= $\langle T(n - 1) = 1 + T(n - 2) \rangle$
= $1 + 1 + T(n - 2)$
= $2 + T(n - 2)$
...
= $n + T(0)$
= $n + 1$
= $O(n)$

(b) Write an iterative algorithm for the same, and calculate the running time.

Algorithm: fact (n)

```
f, i \leftarrow 1, 0-- f = i!until i = n do\|\n f, i \leftarrow f*(i+1), i+1end
```
Loop iterates *n* times. Basic step: multiply. $T(n) = O(n)$

18. Define big-Oh, big-Omega, and big-Theta notations. Give an example for each. **Big-Oh**: definition, graph, example

> $f(n) = O(g(n)) \equiv$ There exist constants c and n_0 such that $f(n) \leq c q(n)$ for all $n \geq n_0$

Big-Omega: definition, graph, example

$$
f(n) = \Omega(g(n)) \equiv
$$
 There exist constants *c* and *n*₀ such that
 $f(n) \ge cg(n)$ for all $n \ge n_0$

Big-Theta: definition, graph, example

$$
f(n) = \Theta(g(n)) \equiv \text{ There exist constants } c_1, c_2, n_0 \text{ such that}
$$

$$
c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0
$$

19. Analyse the best-case, the worst-case, and the average-case running times of the algorithm for an array a of size n ?

```
Algorithm: LinearSearch (a, x)
i \leftarrow 0while i \neq n and a[i] \neq x do i \leftarrow i + 1
```
Worst-case: x is not in a. The loop terminates by $i = n$. Loop iterates n times. $T(n) = n$ **Best-case**: $x = a[0]$. The loop terminates by $a[0] = x$. Loop does not iterate at all. $T(n) = 0$. **Average-case**: *x* is probable in any position from 0 to $n-1$ with probability $\frac{1}{n}$. The loop, on average, iterates $(1 + 2 + ... + (n - 1))/n = (n - 1)n/2$ times. $T(n) = (n - 1)/2$.

20. (a) Solve the recurrence relation

return i

$$
T(n) = \begin{cases} 2T\left(\frac{n}{2}\right) + n & \text{if } n > 1\\ 1 & \text{if } n = 1 \end{cases}
$$

Let $n = 2^h$. Then $h = \log_2 n$

$$
T(n) = n + 2T\left(\frac{n}{2}\right)
$$

= $\left\langle T\left(\frac{n}{2}\right) = \frac{n}{2} + T\left(\frac{n}{2^2}\right) \right\rangle$
 $n + 2\left[\frac{n}{2} + 2T\left(\frac{n}{2^2}\right)\right]$
= $n + n + 2^2T\left(\frac{n}{2^2}\right)$
= $2n + 2^2T\left(\frac{n}{2^2}\right)$
...
= $nh + 2^hT\left(\frac{n}{2^h}\right)$
= $\left\langle n = 2^h \right\rangle$
 $nh + 2^hT(1)$
= $\left\langle h = \log n, n = 2^h, T(1) = 1 \right\rangle$
= $n \log_2 n + n$
= $O(n \log n)$

 \sim

(b) Solve it using Master Theorem. In $T(n) = aT\left(\frac{n}{b}\right)$ $\left(\frac{n}{b}\right) + n^c$,

$$
a = 2
$$

$$
b = 2, c = 1, bc = 21 = 2
$$

$$
a = bc
$$

By Master Theorem

$$
T(n) = \Theta(n^c \log n) = \Theta(n^1 \log n)
$$

- (c) What is the order of growth of $T(n)$?
- 21. A binary search is given as input a sorted array a[1..n] and the output is an index i partitioning the array into two subarrays, $a[1..i] < k$ and $k \le a[i+1..n]$ where k is the search key. It maintains three subarrays $a[1..i-1] < k$, $a[i..j]$, and $k \le a[j+1..n]$ where the search is restricted to a[i..j]. When a[i..j] becomes empty, the search terminates.
	- (i) Choose an index mid in the interval i..j that is close to the middle of the interval. i..j is not empty.

$$
i \leq j
$$

\n
$$
\equiv 2i \leq i+j \leq 2j
$$

\n
$$
\equiv i \leq \frac{i+j}{2} \leq j
$$

\n
$$
\equiv \left\langle m = \frac{i+j}{2} \right\rangle
$$

\n
$$
\equiv i \leq m \leq j
$$

\n
$$
\equiv i \leq m, m \leq j
$$

\n
$$
\equiv i \leq m < \lfloor m \rfloor + 1
$$

\n
$$
\equiv i \leq m + 1, \lfloor m \rfloor \leq m \leq j
$$

\n
$$
\equiv i \leq \lfloor m \rfloor, \lfloor m \rfloor \leq j
$$

\n
$$
\equiv i \leq \lfloor m \rfloor, \lfloor m \rfloor \leq j
$$

(ii) How is the search interval i..j reduced depending on whether $a[m] < k$ or $k \le a[m]$?

$$
[m] < k
$$

\n
$$
\equiv [1..m] < k
$$

\n
$$
\equiv [1..m] < k
$$

\n
$$
\equiv [k \leq [m..n]
$$

\n
$$
\equiv k \leq [m..n]
$$

\n
$$
\equiv [m..n]
$$

\n
$$
[1..i-1] = [1..m]
$$

\n
$$
\equiv [i..j] = [m+1..j]
$$

\n
$$
[j+1..n] = [m..n]
$$

\n
$$
[j+1..n] = [m..n]
$$

\n
$$
[i..j] = [i..m-1]
$$

(iii) What is the key operation of the algorithm? Write the recurrence equation for the running time of the algorithm. Key step: compare.

$$
T(n) = \begin{cases} 1 & \text{if } n = 1 \\ T\left(\frac{n}{2}\right) + 1 & \text{if } n > 1 \end{cases}
$$

22. A divide-and-conquer algorithm is called with an input of size *n*. It does a work of $f(n)$; it divides the problem into a subproblems and to each it passes an input of size $\frac{n}{b}$. The running time of the algorithm is given by

$$
T(n) = aT\left(\frac{n}{b}\right) + f(n)
$$

(i) Draw the recursion tree for the algorithm and find an expression for the running time $T(n)$ of the algorithm, summing the running times of all the recursive calls of the algorithm.

7

$$
f(n)
$$
\n
$$
f\left(\frac{n}{b}\right)
$$
\n
$$
f\left(\frac{n}{b}\right)
$$
\n
$$
f\left(\frac{n}{b}\right)
$$
\n
$$
f\left(\frac{n}{b}\right)
$$
\n
$$
f\left(\frac{n}{b^2}\right)f\left(\frac{n}{b^2}\right)f\left(\frac{n}{b^2}\right)f\left(\frac{n}{b^2}\right)f\left(\frac{n}{b^2}\right)f\left(\frac{n}{b^2}\right)f\left(\frac{n}{b^2}\right)f\left(\frac{n}{b^2}\right)
$$
\n
$$
f\left(\frac{n}{b^3}\right)f\left(\frac{n}{b^3}\right)f\left(\frac{n}{b^3}\right)
$$
\n
$$
f\left(\frac{n}{b^4}\right)f\left(\frac{n}{b^3}\right)f\left(\frac{n}{b^3}\right)f\left(\frac{n}{b^3}\right)f\left(\frac{n}{b^3}\right)f\left(\frac{n}{b^3}\right)
$$
\n
$$
f\left(\frac{n}{b^4}\right)f\left(\frac{n}{b^5}\right)f\left(\frac{n}{b^6}\right)
$$
\n
$$
f\left(\frac{n}{b^6}\right)f\left(\frac{n}{b^6}\right)f\left(\frac{n}{b^6}\right)
$$
\n
$$
f\left(\frac{n}{b^6}\right)f\left(\frac{n}{b^6}\right)
$$
\n
$$
= f(n) + af\left(\frac{n}{b}\right) + a^2 f\left(\frac{n}{b^2}\right) + a^3 f\left(\frac{n}{b^3}\right) + \dots + a^h f\left(\frac{n}{b^h}\right)
$$
\n
$$
= \sum_{n=0}^{h} a^i f\left(\frac{n}{b^4}\right)
$$

where $h = \log_b n$ is the height of the tree.

b i

 $i=0$

(ii) Assuming $f(n) = n^c$, rewrite the expression for the running time $T(n)$. In the divide and conquer recurrences, if $f(n)$ is a polynomial n^c ,

$$
T(n) = \sum_{i=0}^{h} a^{i} \left(\frac{n}{b^{i}}\right)^{c}
$$

$$
= \sum_{i=0}^{h} a^{i} \left(\frac{n^{c}}{b^{ic}}\right)
$$

$$
= \sum_{i=0}^{h} \left(\frac{a^{i}}{b^{ic}}\right) n^{c}
$$

$$
= n^{c} \sum_{i=0}^{h} \left(\frac{a}{b^{c}}\right)^{i}
$$

Good luck is another name for tenacity of purpose. (Ralph Waldo Emerson)

Reviewed by

HoD, CSE

Prepared by

S Kavitha, R S Milton