
Faculty Development Program

Design and Analysis of Algorithms

Asymptotic Analysis of Algorithms

R. S. Milton

Department of Computer Science and Engineering

SSN College of Engineering

11 December, 2014

Contents

1 Analysis of algorithms 6

2 RAM model 9

2.1 RAM model . 10

2.2 RAM model . 11

3 Running time 12

4 Analysis of running time — illustration 14

5 Running time of Selection sort 22

6 Best-case and average-case running time 26

7 Order of growth, informally 37

7.1 Order of growth, informally . 38

8 Asymptotic growth, or order of growth 40

9 Calculation of asymptotic growth 41

10 Common asymptotic growth functions 50

11 Exercises 52

12 Properties of asymptotic functions 54

The prosperity of him who lives without knowing the measure (of his wealth), will

perish, even while it seems to continue.

Thirukkural 479

Design and analysis of algorithm

I Specify the problem precisely.

I Design an algorithm for the problem.

I Construct the algorithm correctly.

I Analyze running time of the algorithm.

� Iterative algorithms

� Recursive algorithms

� Amortized analysis

1. Analysis of algorithms

I Execution of an algorithm requires resources such as time, memory, and disk

space.

I All resources are limited.

I The amounts of resources the algorithm required.

I Performance (efficiency, complexity) of algorithm is measured by the resources

the algorithm requires for its execution.

Calculating analytically the resources such as time and memory required for exe-

cuting an algorithm without actually executing the algorithm is called analysis of

algorithm.

Analysis

Measures of performance

I Space complexity: memory space required to execute the algorithm.

I Time complexity: Running time required to execute the algorithm.

Primarily interested in the running time of algorithms:

I Running time is the most important of the two resources.

I Running time is more tractable analytically.

Use of analysis

I Efficiency: The running time of the algorithm should be practical (polynomial)

— it depends on the size of the input, the nature of the input, and the machine

which executes the algorithm.

I Comparison: When we have alternative algorithms to solve the same problem,

we want to compare their performances (resource requirements), and choose

the one that best suits the available resources.

2. Model of machine

I An algorithm is composed of instructions which can be executed by a machine.

I The time required to execute an instruction depends on the machine — its

instruction set, speed.

I Choose a machine.

I Analysis becomes intractable for actual machines.

I Running time thus obtained has more details than is necessary. Therefore, it

suffices to consider a simplified abstract model of an actual machine.

I Analysis tedious

I Too many details

Actual machine

2.1. RAM model of computation

I Defines a set of basic instructions or basic steps.

I Instructions of all the algorithms can be decomposed to the basic steps of this

abstract machine.

I Executed in constant amount of time. It does not depend on the input size.

I Analyzing an algorithm ≡ counting the total number of basic steps executed

by the algorithm.

Basic step and analysis

2.2. RAM model of computation

I Basic instructions or basic steps — take constant time, independent of input

size.

� Arithmetic

� Comparison

� Logical

� Assignment

I Loops and subroutine (function) calls take varying time

I One level memory hierarchy — instructions and data are in memory.

Random Access Machine

3. Running time

Running time of an algorithm ≡ the total number of basic steps (basic instruc-

tions) executed.

We have abstracted away the architecture, instruction set and the speed of the

computer.

I Calculate how many times each basic step is executed.

I Running time T(n) is the total number of basic steps executed by the algorithm.

I T(n) depends on the size of the input n = input size or problem size.

I For the same problem size, the running time also depends on the properties of

the input (e.g. is it ordered?)

I Calculate the

� Memory space

� Running time

required to execute the algorithm to completion, without executing the al-

gorithm.

I Why analyze algorithms?

� Efficiency

� Comparison

I How to analyze an algorithm?

� Identify the basic statements.

� Count how many times each basic statement is executed.

� Total the count.

Analysis of algorithm – Summary

4. Analysis of running time — illustration

Algorithm: Sum(a)

Input: Array a[0 : n] of n numbers

Output: s, the sum of the numbers of a[0 : n]

1 s← 0 // c1

2 i← 0 // c2

-- s = sum []

3 until i = n do // c3× (n + 1)
4 s← s + a[i] // c4× n
5 i← i + 1 // c5× n
6 end

-- s = sum [0:n]

7 return s

Running time of Sum is

T(n) = c1 + c2 + c3(n + 1) + c4n + c5n

= (c3 + c4 + c5)n + (c1 + c2 + c3)

= an + b

where a, b are the constants

a = c3 + c4 + c5

b = c1 + c2 + c3

Algorithm: LinearSearch (a, x)

Input: Array a[0 : n] of n numbers, and a target x to search for.

Output: i, such that a[i] = x if x is in the array; otherwise, i = n

1 i← 0 // c1

-- x 6∈[]
2 until i = n or a[i] = x do // c2× (n + 1)
3 i← i + 1 // c3× n
4 end

-- x 6∈ [0:i]

5 return i

Worst case occurs when the target is not found. Worst-case running time of Lin-

earSearch is

T(n) = c1 + c2(n + 1) + c3n

= (c2 + c3)n + c1

= an + b

where a, b are the constants

a = c2 + c3

b = c1

Best case occurs when the target is the 0th item. Best-case running time of

LinearSearch is

T(n) = c1 + c2

= a

Average case is difficult to define. The target is equally likely to be in any of the n
positions: 0, 1, . . ., n− 1.

P(0) = P(1) = . . . = P(n− 1) =
1
n

On an average, the number of iterations

= P(0)× 0 + P(1)× 1 + P(2)× 2 + . . . + P(n− 1)× (n− 1)

=
1
n
× (1 + 2 + . . . + (n− 1))

=
1
n
×

n−1

∑
i=1

i

=
1
n
×

(n− 1)n
2

=
n− 1

2

On an average, the number of times the loop condition is tested

=
n− 1

2
+ 1 =

n + 1
2

Algorithm: LinearSearch (a, x)

Input: Array a[0 : n] of n numbers, and a key x to search for.

Output: i, such that a[i] = x if x is in the array; otherwise, i = n

1 i← 0 // c1

2 until i = n or a[i] = x do // c2× n+1
2

3 i← i + 1 // c3× n−1
2

4 end

5 return i

Average-case running time of LinearSearch is

T(n) = c1 + c2

(
n + 1

2

)
+ c3

(
n− 1

2

)

= (c2 + c3)n +

(
c1−

c2

2
−

c3

2

)
= an + b

where a, b are the constants a = c2 + c3, b = c1−
c2

2
−

c3

2
.

Worst-case Best-case Average-case

an + b a an + b
O(n) O(1) O(n)
Linear time Constant time Linear time

5. Running time of Selection sort

Algorithm: SelectionSort(a)

Input: An array [a0, a1, . . . an−1] of size n
Output: A permuted array [a

′
0, a

′
1, . . . , a

′
n−1] such that

a
′
0 ≤ a

′
1 ≤ . . . ≤ a

′
n−1

1 for i← 1 to n− 1 do // c1× n
2 m, j← i, i + 1 // c2× (n− 1)
3 until j = n do // c3×∑n−1

i=1 n− i
4 if a[j] < a[m] then // c4×∑n−1

i=1 n− i− 1
5 m← j // c5×∑n−1

i=1 n− i− 1
6 end

7 j← j + 1 // c6×∑n−1
i=1 n− i− 1

8 end

9 swap a[i] a[m] // c7× (n− 1)
10 end

Running time analysis of Insertion sort

I The outer loop iterates n− 1 times.

I For each iteration of the outer loop, the nested loop iterates i times.

I Therefore, the nested loop body is executed Σn−1
i=1 i times.

n−1

∑
i=1

i = 1 + 2 + 3 + . . . + (n− 1)

=
(n− 1)× n

2

=
n2

2
−

n
2

n−1

∑
i=1

(i + 1) = 2 + 3 + . . . + n

=
n× (n + 1)

2
− 1

=
n2

2
+

n
2
− 1

The running time of the algorithm is

T(n) = c1n + c2(n− 1) + c3(n− 1) + c4

n−1

∑
i=1

(i + 1) + c5

n−1

∑
i=1

i

+ c6

n−1

∑
i=1

i + c7(n− 1)

= c1n + c2(n− 1) + c3(n− 1) + c4(
n2

2
+

n
2
− 1)+

(c5 + c6)(
n2

2
−

n
2
) + c7(n− 1)

= (
c4

2
+

c5

2
+

c6

2
)n2 + (c1 + c2 + c3 +

c4

2
−

c5

2
−

c6

2
+ c7)n−

(c2 + c3 + c4 + c7)

= an2 + bn + c

where a, b, c are the constants

a =
c4

2
+

c5

2
+

c6

2

b = c1 + c2 + c3 +
c4

2
−

c5

2
+ c7

c = c2 + c3 + c4 + c7

6. Best-case and average-case running time

Worst-case running time

When the input array is reverse-sorted

I key to be inserted in an appropriate position in the sorted subarray A[0 : i] is

less than all the items in the sorted subarray.

I Therefore, key will have to be inserted as the 0th item in the subarray A[0 : i]
I Hence, for each outer loop iteration, the nested loop is iterated i times

I Totally, the nested loop is iterated ∑n
i=1 i times (and the nested loop condition,

∑n
i=1 i + 1 times).

Worst-case running time is the longest running time on any input of size n
I It provides a guarantee on the upper-bound of the running time.

I It occurs often.

I The average-case is as bad as worst-case.

I It is mathematically more tractable than average case.

Worst-case running time

Best-case running time

Best-case of the Insertion sort occurs when the input array is already sorted,

I key is already in its right position.

I Hence, the nested loop terminates immediately (iterated 0 times)

I Totally, the nested loop is executed ∑n
i=1 1 = n times.

Input: An array [a0, a1, . . . , an−1] of size n
Output: A permuted array [a

′
0, a

′
1, . . . , a

′
n−1] such that

a
′
0 ≤ a

′
1 ≤ . . . ≤ a

′
n−1

1 for i← 1 to n− 1 do // c1× n
2 j← i // c3× (n− 1)
3 until j = 0 or a[j− 1] ≤ a[i] do // c4×∑n−1

i=1 1
4 a[j]← a[j− 1] // c5× 0
5 j← j− 1 // c6× 0
6 end

7 a[j]← a[i]
8 end

In insertion sort, when the input array is already sorted, the key to be inserted in

the sorted section of the array is already in its right position, and hence, right after

one probe, the nested loop terminates.

If the outer loop iterates n times, then the nested loop statement is executed n
times; in each of the n times, the nested loop condition is evaluated only once and

the loop terminates immediately. Therefore, in all, the nested loop condition is

evaluated
n

∑
i=1

1 = n

times.

The best-case running time of the algorithm is

T(n) = c1n + c2(n− 1) + c3(n− 1) + c4(n− 1) + c7(n− 1)

= (c1 + c2 + c3 + c4 + c7)n− (c2 + c3 + c4 + c7)

= bn + c

Thus, the order of growth of the best-case running time of insertion sort is Θ(n).

Average-case running time

I On an “average”, in the sorted section a[0 : i], half the items are greater and

half the items are less than a[i]
I What is “average” input?

I All inputs of a given size n equally likely!

Worst-case Best-case Average-case

an2 + bn + c an + b an2 + bn + c
O(n2) O(n) O(n2)

Quadratic time Linear time Quadratic time

Exercises

1. What are the goals of algorithm analysis?

2. State two resources an algorithm requires for execution.

3. What are the two measures of performance of algorithms?

4. What is analysis of algorithm?

5. When is an algorithm said to have a practical running time?

6. What is meant by polynomial time?

7. How is a basic step of the abstract machine is defined?

8. How is an algorithm analyzed in the abstract machine?

9. How is the running time of algorithm calculated in RAM machine?

10. State the two factors the running time of an algorithm depends on.

11. Analyze the running time of insertion sort.

12. Why is analyzing the worst-case running time preferred to other cases?

13. Calculate average-case running time of Insertion sort.

14. How do you calculate the order of growth of a function?

15. Mention the abstractions we have made to calculate the running time of algo-

rithms.

16. Define order of growth or asymptotic growth of a function.

Calculate the number of basic steps executed in each of the following algorithms:

1. How many times the for loop body is executed?

sum← 0
for i← 0 to n− 1

sum← sum + a[i]
end

2. How many times the for loop body is executed?

i← n
until i = 0 or a[i− 1] ≤ a[i] do

swap a[i− 1], a[i]
i← i− 1

end

3. How many times the nested for loop body is executed?

for i← 1 to n− 1
j← i
until j = 0 or a[j] > a[i] do

swap a[j− 1] a[j]
j← j− 1

end

end

4. How many times the for loop body is executed?

sum← 0
for i← 0 to n− 1

sum← sum + a[i]
end

5. How many times the statement min← i is executed?

min← 0
for i← 0 to n− 1
if a[i] < a[min] then

min← i
end

end

6. Calculate how many times the innermost assignment is repeated?

for i← 1 to m
for j← 1 to n

c[i, j]← a[i, j] + b[i, j]
end

end

7. How many times the innermost statement (increment x) is executed? What is

the final value of x? Express the time complexity T(n) in big Oh.

x ← 0
for i← 1 to n
for j← i to 2n

x ← x + 1
end

end

8. How many times the innermost loop is iterated?

for i← 1 to m
for j← 1 to p

c[i, j]← 0
for k← 1 to n

c[i, j]← c[i, j] + a[i, k] ∗ b[k, j]
end

end

end

I Construct algorithm = design, prove the correctness, analyze algorithm.

I Analyze algorithm = calculate the running time analytically, without execut-

ing it.

I Running time depends on the input size, nature of the input, and the machine

executing the instructions.

I Simplified model (abstraction) of machine — RAM: basic instructions exe-

cute in constant amount of time, independent of the input (operand) size.

I Calculate the total number of times each basic step in the algorithm is

executed.

I If a basic step is inside a loop, calculate how many times the loop is iterated.

I Analyze the worst-case running time.

Analysis of running time

7. Order of growth, informally

Our life is frittered away by detail. Simplify, simplify. (Henry David Thoreau)

Do not miss the wood for the trees.(Proverb)

Big picture

In order to calculate the order of growth of the function an2 + bn + c,

I ignore lower-order terms such as bn, c
I ignore multiplicative constants such as a of the highest order term an2

The running time T(n) = (an2 + bn + c) of the algorithm = Θ(n2)

I For small inputs, this running time will have errors

I For large inputs, this running time is valid for both efficiency and comparison

purposes.

7.1. Order of growth, informally

I Running time of algorithms — how do they grow when the input size becomes

very large?

I We are interested in the asymptotic growth of functions, growth of functions

in the limit.

I A simple way to calculate the asymptotic growth of a function is to abstract

away its low-order terms and constant factors of the highest order term.

I Running times of algorithms are expressed by their asymptotic growth.

I Compare “growth” of functions:
O ≤
Ω ≥
Θ =

o <

ω >

We use asymptotic notation to compare “growths” of functions:

Asymptotic

notation

Intuitive

meaning

Order of growth

f = O(g) f ≤ g f grows slower than or as fast as g
f grows no faster than g

f = Ω(g) f ≥ g f grows faster than or as fast as g
f grows no slower than g

f = Θ(g) f = g f grows as fast as g
f grows at the same rate as g

f = o(g) f < g f grows slower than g
f = ω(g) f > g f grows faster than g

8. Asymptotic growth, or order of growth

I As input size n increases, the running time T(n) also increases.

I Measure of how fast it increases with the input size n. The running times

T(n) = n2 and T(n) = n3 both increase with the input size. But how fast?

I Asymptotic growth (order of growth) of a function f (n) can be observed only

when n becomes very large.

I As input size n increases, the running time T(n) also increases.

I How fast the running time T(n) grows as n becomes very large, tends to

infinity, in the limit.

Asymptotic growth or Order of growth

9. Calculation of asymptotic growth

I Running time is a function of input size n, T(n).
I Ignore lower-order terms.

I Ignore multiplicative constants of the highest order term

I Find out a suitable constant.

Big-Oh notation

n0

f(n)

cg(n)

I Growth of a function f (n) can be described by an asymptotic upper bound

g(n) for it.

I Informally, we say that the given function is “less than or equal to” the asymp-

totic upper bound, or, intuitively, the given function grows slower than or as

fast as the asymptotic upper bound; f (n) ≤ g(n). Formally, f (n) = O(g(n).
I Precisely, there exists a constant c such that f (n) ≤ cg(n).
I Even this needs to be true only when n is very large, that is, for all n ≥ n0.

Working definition

f (n) = O(g(n)) ≡ There exist constants c and n0 such that

f (n) ≤ cg(n) for all n ≥ n0

Or, more precisely,

O(g(n)) = { f (n) :There exist +ve constants c and n0 such that

f (n) ≤ cg(n) for all n ≥ n0}

Therefore,

f (n) = O(g(n)) ≡ f (n) ∈ O(g(n))

Big-Oh

Big-Omega notation

n0

f(n)

cg(n)

I Growth of a function f (n) can be described by an asymptotic lower bound g(n)
for it.

I Intuitively, we say that the given function is “greater than or equal to” the

asymptotic lower bound, or the given function grows faster than or as fast as

the asymptotic lower bound; f (n) ≥ g(n). Formally, f (n) = Ω(g(n).
I Precisely, there exists a constant c such that f (n) ≥ cg(n).
I Even this needs to be true only when n is very large, that is, for all n ≥ n0.

f (n) = Ω(g(n)) ≡ There exist constants c and n0 such that

f (n) ≥ cg(n) for all n ≥ n0

Precisely,

Ω(g(n)) ={ f (n) : There exist +ve constants c and n0

such that f (n) ≥ cg(n) for all n ≥ n0}

Therefore,

f (n) = Ω(g(n)) ≡ f (n) ∈ Ω(g(n))

Big-Omega

Big-Theta notation

n0

f(n)

c1g(n)

c2g(n)

I Growth of a function f (n) can be described by an asymptotic tight bound g(n)
for it.

I Intuitively, we say that the given function is “equal to” the asymptotic tight

bound, or the given function grows as fast as the asymptotic tight bound:

f (n) = g(n); formally, f (n) = Θ(g(n)).
I Precisely, there exists constants c1 and c2 such that c1g(n) ≤ f (n) ≤ c2g(n).
I Even this needs to be true only when n is very large, that is, for all n ≥ n0.

f (n) = Θ(g(n)) ≡ There exist constants c1, c2, n0 such that

c1g(n) ≤ f (n) ≤ c2g(n) for all n ≥ n0

Precisely,

Θ(g(n)) ={ f (n) : There exist +ve constants c1, c2 and n0

such that 0 ≤ c1g(n) ≤ f (n) ≤ c2g(n)

for all n ≥ n0}

Therefore,

f (n) =Θ(g(n)) ≡ f (n) = O(g(n)) and f (n) = Ω(g(n))

Big-Theta notation

o notation

o(g(n)) = { f (n) : for all constants c > 0, there exists a

constant n0 > 0 such that 0 ≤ f (n) < cg(n)

for all n ≥ n0}

lim
n→∞

f (n)
g(n)

= 0

ω notation

ω(g(n)) = { f (n) : for all constants c > 0, there exists a

constant n0 > 0 such that 0 ≤ f (n) > cg(n)

for all n ≥ n0}

lim
n→∞

f (n)
g(n)

= ∞

Asymptotic notation in equations

I On right side: O(g(n)) stand for some anonymous function in O(g(n)).
I On left side: No matter how the anonymous function is chosen on the left side,

there is a way to choose an anonymous function on the right side to make the

equation valid.

10. Common asymptotic growth functions

n f (n) lg n n n lg n n2 2n n!
10 0.003 µs 0.01 µs 0.033 µs 0.1 µs 1 µs 3.63 ms

20 0.004 µs 0.02 µs 0.086 µs 0.4 µs 1 ms 77.1 yrs

30 0.005 µs 0.03 µs 0.147 µs 0.9 µs 1 sec 8.4× 1015

40 0.005 µs 0.04 µs 0.213 µs 1.6 µs 18.3 min

50 0.006 µs 0.05 µs 0.282 µs 2.5 µs 13 days

100 0.007 µs 0.1 µs 0.644 µs 10 µs 4 × 1013 yrs

1,000 0.010 µs 1.00 µs 9.966 µs 1 ms

10,000 0.013 µs 10 µs 130 µs 100 ms

100,000 0.017 µs 0.10 ms 1.67 ms 10 sec

1,000,000 0.020 µs 1 ms 19.93 ms 16.7 min

10,000,000 0.023 µs 0.01 sec 0.23 sec 1.16 days

100,000,000 0.027 µs 0.10 sec 2.66 sec 115.7 days

1,000,000,000 0.030 µs 1 sec 29.90 sec 31.7 years

Constant functions g(n) = 1
Logarithmic functions g(n) = lg n
Linear functions g(n) = n
Superlinear functions g(n) = n lg n
Quadratic functions g(n) = n2

Cubic functions g(n) = n3

Exponential functions g(n) = cn

Factorial functions g(n) = n!

1 ≤ lg n ≤ n ≤ n lg n ≤ n2 ≤ n3 ≤ cn ≤ n!

If the asymptotic growth of a running time is “less than equal” to polynomial

time (nm), then the running time is practically efficient. If the asymptotic growth

of a running time is “greater than” polynomial time, it is not practical.

Dominance relations and efficiency

11. Exercises

I Which of the functions is greater, and in what range of n? f1(n) = n2, f2(n) =
2n + 20. Find out a constant c so that f2 ≤ c f1.

I Which of the functions is greater, and in what range of n? f3(n) = n +

1, f2(n) = 2n + 20. Find out a constant c so that f3 ≤ c f2.

I 3n2− 100n + 6 = O(n2). Choose c.

I 3n2− 100n + 6 = O(n3). Choose c and n0.

I 3n2− 100n + 6 6= O(n).

I 3n2− 100n + 6 = Ω(n2). Choose c and n.

I 3n2− 100n + 6 6= Ω(n3). Choose c and n.

I 3n2− 100n + 6 = Ω(n). Choose c.

I 3n2− 100n + 6 = Θ(n2).

I 3n2− 100n + 6 6= Θ(n3).

I 3n2− 100n + 6 6= Θ(n).

I 2n+1 = Θ(2n).

12. Properties of asymptotic functions

Comparison of functions — Relational properties:

I Transitivity

f (n) = Θ(g(n)) and g(n) = Θ(h(n))⇒ f (n) = Θ(h(n)).
Same for O, Ω, o, ω

I Reflexivity

f (n) = Θ(f (n)). Same for O, Ω
I Symmetry:

f (n) = Θ(g(n)) ≡ g(n) = Θ(f (n)).
I Transpose symmetry

f (n) = O(g(n)) ≡ g(n) = Ω(f (n)).
f (n) = o(g(n)) ≡ g(n) = ω(f (n)).

I Comparisons

f (n) is asymptotically smaller than g(n) if f (n) = o(g(n)).
f (n) is asymptotically larger than g(n) if f (n) = ω(g(n)).

Adding two functions

O(f (n)) + O(g(n)) ≡ O(max(f (n), g(n)))

Ω(f (n)) + Ω(g(n)) ≡ Ω(max(f (n), g(n)))

Θ(f (n)) + Θ(g(n)) ≡ Θ(max(f (n), g(n)))

Multiplying functions

O(c f (n)) ≡ O(f (n))

Ω(c f (n)) ≡ Ω(f (n))

Θ(c f (n)) ≡ Θ(f (n))

O(f (n))×O(g(n)) ≡ O(f (n)× g(n))

Ω(f (n))×Ω(g(n)) ≡ Ω(f (n)× g(n))

Θ(f (n))×Θ(g(n)) ≡ Θ(f (n)× g(n))

	Analysis of algorithms
	RAM model
	RAM model
	RAM model

	Running time
	Analysis of running time — illustration
	Running time of Selection sort
	Best-case and average-case running time
	Order of growth, informally
	Order of growth, informally

	Asymptotic growth, or order of growth
	Calculation of asymptotic growth
	Common asymptotic growth functions
	Exercises
	Properties of asymptotic functions

