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1. Outcomes

At the end of the course, the student will be able to:

I design algorithms for various computing problems,

I analyze the time and space complexity of algorithms,

I critically analyze the different algorithm design techniques for a given problem.

I modify existing algorithms to improve efficiency.

Books

I Anany Levitin, “Introduction to the Design and Analysis of Algorithms”, Third

Edition, Pearson Education, 2012.

I S. Dasgupta, C. H. Papadimitriou, and U. V. Vazirani, “Algorithms”, McGraw-

Hill Higher Education, 2006



2. Algorithmic Problem Solving



3. Important Problem Types



4. What is an Algorithm?

A well-defined computational procedure composed of of instructions that solves the

problem in a finite number of steps.

Algorithm

I A computational problem is specified by its input, output, and the relation

between the input and the output.

I Algorithms are procedural solution to problems.



Problem, Process, Algorithm

I A computational probelm is defined by the input given, the output required

and the input–output relation (precondition and the postcondition).

I A computational process starts with the precondition, evolves, and terminates

with the postcondition.

I A computational process is generated by an algorithm. When an algorithm is

executed, a process evolves.



5. Design, correctness, efficiency

I Specify the problem precisely: its input, output, and input–output relation.

I Design an algorithm for solving a problem.

I Prove the correctness of the algorithm: when the algorithm is executed, the

specified input–output relation is satisfied

I Analyze the efficiency of the algorithm: the resources (running time and mem-

ory space) required by the algorithm to finish execution.



6. Problem specification

Speed takes you nowhere if you are heading in the wrong direction.

American proverb

I Understand the computational process (or invent a process).

I Execute the process with examples.

I Specify the computational problem in terms of its input, output, and the rela-

tion between the input and the output.

I Is there an algorithm in the manual?

I If there area many, compare algorithms.



7. Computing constraints

I Computing model: von Neumann machine, RAM random access machine  

sequential algorithms

I Resources available vs huge volumes of data and time-criticality

I Exact vs approximate algorithms



8. Design algorithms and data structures

I Visualize the process.

I Conceptualize the algorithm.

I Data representation is the essence of programming.

I Algorithms + Data structures = Programs



Algorithmic notation

I Natural language (English) — too ambiguous but informal.

I Programming language (even a high-level one) — too tedious but precise.

I Pseudocode: A blend of English and high-level programming language — in-

formal and precise.

I Very-high level programming languages — Python, Haskell

I How about flowchart (flawchart)?

Algorithm Program

Need not be formal (but unambiguous

and precise)

Formal (hence, unambiguous and pre-

cise)

For design, correctness, analysis Can be executed by a machine

Must terminate Need not terminate



9. Design techniques

I Algorithm design techniques or strategies or tools — general approaches to

common to a variety of problems

I Classification



10. Proving correctness

Correctness is clearly the prime quality. If a system does not do what it is

supposed to do, then everything else about it matters little.

Bertrand Meyer

Program testing can be a very effective way to show the presence of bugs, but

is hopelessly inadequate for showing their absence.

E W Dijkstra

I A correct program need still be tested.

I Need to be simple to understand.

There are theories to reason about the correctness of programs.

Criticism:

I Most of the programs are not mission-critical!



I Learning curve of the theory is steep, and the benefit not commensurate with

the effort.

I Real programs too large to calculate! So why calculate “small” programs?

Benefit:

I The goal is not correctness for correctness’ sake.

I The goal of program construction is to satisfy the input-ouput relation. Concern

for correctness leads the stepwise construction of program toward the goal. The

end program is correct by construction.

I Scale of the artifact does not obviate the need for knowing the fundamental

tools of the trade!



Loop invariant and progress measure

Mathematical induction on iterative algorithms

I Linear search: search for a target in an array.

I Polish National Flag: partition an array into two parts.



Search for a target in an array, Linear search

The input are an array a of N comparable items and a target item x to be searched

in the array. The postcondition is: the output is the index of the target item in the

array, if the target is present in the array; otherwise, the output is N, index of an

invalid item.

A snapshot in the middle of the loop is that the subarray a[0:i] is processed (or

conversely subarray a[i:N] is unprocessed). The basic iterative step is to compare

the next item a[i] with the target x. In an iterative step, the processed subarray

a[0:i] grows (unprocessed subarray a[i:N] shrinks).

Input: a = [2, 5, 6, 8, 9, 10], N = 6, x = 9



iteration i a x

1 0 2, 5, 6, 8, 9, 10 9

2 1 2, 5, 6, 8, 9, 10 9

3 2 2, 5, 6, 8, 9, 10 9

4 3 2, 5, 6, 8, 9, 10 9

5 4 2, 5, 6, 8, 9, 10 9

Output: i = 4
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Algorithm: LinearSearch (a, x)

input : An array a = [a0, a1, . . ., aN−1] of size N

output: Index i such that x 6= [0:i] and a[i] = x or i = N

1 i ← 0

2 until i = N or a[i] = x do

3 i ← i + 1

4 end

5 return i



Algorithm: LinearSearch (a, x)

input : An array a = [a0, a1, . . ., aN−1] of size N

output: Index i such that x 6= [0:i] and a[i] = x or i = N

1 i ← 0

-- i = 0, x 6∈ [0:i] ≡ x 6∈ []

2 until i = N or a[i] = x do

-- i 6= N, x 6∈ [0:i], x 6= [i]

-- x 6∈ [0:i+1]

3 i ← i + 1

-- x 6∈ [0:i’]

4 end

-- x 6∈ [0:i], x = [i]

-- x 6∈ [0:i], i = N ≡ x 6∈ [0:N]

5 return i



Partition an array into two parts, Polish National

Flag

The input is an array a of N comparable items. The items are of two kinds, say Red

and White. The postcondition is that the array is partitioned into two subarrays

and the items so rearranged that

I subarray [0:r] has items of one kind (red), and

I subarray [r:N] has items of the other kind (white)

The only operations permitted are

I compare two items

I swap two items



Computer Science is no more about computers

than astronomy is about telescopes or biology

is about microscopes (E W Dijkstra).

Dutch National Flag
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Algorithm: Partition (a)

input : A array a[0:N] of red and white items

output: Index r such that a[0:r] is red, a[r:N] is white

1 r, w ← 0, 0

2 until w = N do

3 if a[w] = W then

4 w ← w+1

5 else

6 swap (A, r, w)

7 r, w ← r+1, w+1

8 end

9 end

10 return r



Algorithm: Partition (a)

input : A array a[0:N] of red and white items

output: Index r such that a[0:r] is red, a[r:N] is white

1 r, w ← 0, 0

-- [] is red, [] is white

2 until w = N do

-- [0:r] is red, [r:w] is white

3 if a[w] = W then

4 w ← w+1

-- [0:r] is red, [r:w’] is white

5 else

6 swap (A, r, w)

7 r, w ← r+1, w+1

-- [0:r’] is red, [r’:w’] is white

8 end

9 end

10 return r



11. Analyzing algorithms for efficiency

I Time efficiency — how fast

I Space efficiency — how much memory



12. Syllabus

Unit I 9

Algorithm Analysis: Time Space Trade-off – Asymptotic Notations – Conditional

asymptotic notation – Removing condition from the conditional asymptotic nota-

tion – Properties of big-Oh notation – Recurrence equations – Solving recurrence

equations – Analysis of linear search.

Unit II 9

Divide and Conquer: General Method – Binary Search – Finding Maximum and

Minimum – Merge Sort. Greedy Algorithms: General Method – Container Loading

Knapsack Problem.

Unit III 9

Dynamic Programming: General Method – Multistage Graphs – All-Pair short-



est paths – Optimal binary search trees – 0/1 Knapsack – Traveling salesperson

problem.

Unit IV 9

Backtracking: General Method – 8 Queens problem – sum of subsets – graph

coloring – Hamiltonian problem – knapsack problem.

Unit V 9

Graph Traversals: Connected Components – Spanning Trees – Biconnected com-

ponents. Branch and Bound: General Methods (FIFO & LC) – 0/1 Knapsack

problem. Introduction to NP-Hard and NP-Completeness.



Text Books

I Ellis Horowitz, Sartaj Sahni and Sanguthevar Rajasekaran, “Computer Algo-

rithms/C++”, Second Edition, Universities Press, 2007. (For Units II to V)

I K.S. Easwarakumar, “Object Oriented Data Structures using C++”, Vikas

Publishing House pvt. Ltd., 2000 (For Unit I)

References

I T. H. Cormen, C. E. Leiserson, R.L.Rivest, and C. Stein, “Introduction to

Algorithms”, Second Edition, Prentice Hall of India Pvt. Ltd, 2003.

I Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, “The Design and

Analysis of Computer Algorithms”, Pearson Education, 1999.
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