SSN COLLEGE OF ENGINEERING, KALAVAKKAM – 603 110 DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING B.E. Computer Science and Engineering CS6402 Design and Analysis of Algorithms

Date Acae Sem	e: 23.02.2017, 1.5 demic Year: 201 ester: 4	50-3.20 AM 6-2017 Even	U Faculty:	NIT	TE R. 1	ST ST S. N	– 2 Iilte	(Retest) B V. B	Max. M Batch: 20 alasubra	arks: 50)15-2019 amanian
Qn. No		Part -	- A (5 * 2 =	10)						Marks	(KL,COn)
1 2 3 4 5	What is the complexity of Strassen Matrix multiplication? What is the advantage of dynamic programming? Define 0/1 knapsack problem. What is meant by Principle of Optimality? List out the memory functions used under Dynamic Programming Part – B Answer all questions (13+13)							50	2 2 2 2 2	K1,CO1 K1,CO1 K1,CO1 K3,CO3 K3,CO3	
8	Explain Strasser analyse the con $A = \begin{bmatrix} 1\\5\\9\\4 \end{bmatrix}$ And multiply th	n's Matrix mult nplexity 2 3 4 6 7 8 1 2 3 5 6 7 9 e given matrix	$B = \begin{bmatrix} B \\ B \end{bmatrix}$	with if 8 3 7 2 ame.	ts p 9 4 8 3	1 5 9 4	edu 2 6 1 5	re and		13	K3,CO3
9	Write the algoric conquer technic solve them. 567	ithm of Large I que. Explain hc 78*9423	OR nteger mul ow divide a	tiplic nd cc	atio nq	on u uer	sing can	g divide a be used	nd to	13	K1,CO1
10	Find an optimal	solution to the	e knapsack	insta	nce	5				13	K3,CO3
	item	weight	value								
	1	3	\$25								
	2	2 2		\$20							
	3	1	\$15	capacity $W = 6$.							
	4	4	\$40								
	5	5	\$50								

Using dynamic programming approach with appropriate algorithm and analyse it.

OR

11 Define and analyse the convex hull problem using divide and 13 K3,CO3 conquer technique.

Define and analyse the closest pair problem using divide and conquer technique.

12 Construct the all pair shortest path for the digraph with the weight 14 K4,CO4 matrix given below. Write the algorithm.

Write the algorithm of Quick sort using divide and conquer technique 14 K3,CO3 the recurrence for the time complexity of quicksort and solve it.
Trace the algorithm for {310,285,179,652,351,423,861,254,450,520}.

Prepared by	Reviewed by HoD, CSE
	557