Traveling Salesman Problem

there are only 2^n different subsets of n objects $(n! > 2^n)$. Let G = (V, E) be a directed graph with edge costs c_{ij} . The variable c_{ij} is defined such that $c_{ij} > 0$ for all i and j and $c_{ij} = \infty$ if $\langle i, j \rangle \notin E$. Let |V| = n and assume n > 1. A tour of G is a directed simple cycle that includes every vertex in V. The cost of a tour is the sum of the cost of the edges on the tour. The traveling salesperson problem is to find a tour of minimum cost.

$$g(1, V - \{1\}) = \min_{2 \le k \le n} \{c_{1k} + g(k, V - \{1, k\})\}$$
(5.20)

Generalizing (5.20), we obtain (for $i \notin S$)

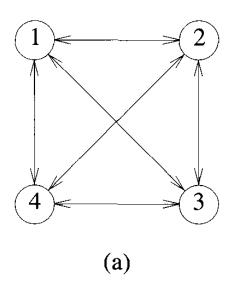
$$g(i,S) = \min_{j \in S} \{c_{ij} + g(j, S - \{j\})\}$$
 (5.21)

$$g(i,\phi) = c_{i1}, \ 1 \le i \le n.$$

Contd...

of size 1. Then we can obtain g(i,S) for S with |S|=2, and so on. When |S|< n-1, the values of i and S for which g(i,S) is needed are such that $i\neq 1, 1\not\in S$, and $i\not\in S$.

Example



0	10	15	20
5	0	9	10
6	13	0	12
8	8	9	0
	(b)		

Thus $g(2,\phi) = c_{21} = 5$, $g(3,\phi) = c_{31} = 6$, and $g(4,\phi) = c_{41} = 8$. Using (5.21), we obtain

$$g(2, \{3\}) = c_{23} + g(3, \phi) = 15$$
 $g(2, \{4\}) = 18$
 $g(3, \{2\}) = 18$ $g(3, \{4\}) = 20$
 $g(4, \{2\}) = 13$ $g(4, \{3\}) = 15$

Next, we compute g(i, S) with |S| = 2, $i \neq 1$, $1 \notin S$ and $i \notin S$.

$$g(2, \{3,4\}) = \min \{c_{23} + g(3, \{4\}), c_{24} + g(4, \{3\})\} = 25$$

 $g(3, \{2,4\}) = \min \{c_{32} + g(2, \{4\}), c_{34} + g(4, \{2\})\} = 25$
 $g(4, \{2,3\}) = \min \{c_{42} + g(2, \{3\}), c_{43} + g(3, \{2\})\} = 23$

Finally, from (5.20) we obtain

$$g(1, \{2, 3, 4\}) = \min\{c_{12} + g(2, \{3, 4\}), c_{13} + g(3, \{2, 4\}), c_{14} + g(4, \{2, 3\})\}\$$

= $\min\{35, 40, 43\}$
= 35

Contd...

j that minimizes the right-hand side of (5.21). Let J(i,S) be this value. Then, $J(1,\{2,3,4\})=2$. Thus the tour starts from 1 and goes to 2. The remaining tour can be obtained from $g(2,\{3,4\})$. So $J(2,\{3,4\})=4$. Thus the next edge is $\langle 2,4\rangle$. The remaining tour is for $g(4,\{3\})$. So $J(4,\{3\})=3$. The optimal tour is 1, 2, 4, 3, 1.