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DESIGN AND 
ANALYSIS OF 
ALGORITHMS 

Remember this: “No problem is too tough if u spend enuf time on it” 
     -A great man 

Question: 
𝑎𝑛 + 𝑏𝑛 = 𝑐𝑛 

 
   find a,b,c 

Answer: Etho 
ingay irukku!! 
 

𝑎𝑛 + 𝑏𝑛 = 𝑐𝑛 
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UNIT –V SYLLABUS 
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GRAPH TRAVERSALS 



THERE ARE TWO DIFFERENT 
GRAPH TRAVERSALS WHICH WE 
WILL BE DEALING WITH 

 

• BREADTH FIRST TRAVERSAL(BFS) 

• DEPTH FIRST TRAVERSAL(DFS) 
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GRAPH TRAVERSALS 
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BREADTH FIRST SEARCH 

BASIC IDEA: 

 Visits graph vertices by moving across to all the 
neighbors of last visited vertex b  

 BFS uses a queue 

 a vertex is inserted into queue when it is reached for 
the first time, and is marked as visited. 

 a vertex is removed from the queue, when it 
identifies all unvisited vertices that are adjacent to 
the vertex b 
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ALGORITHM FOR BFS 
 

void BFS(int v) 

{ 

//v being a starting vertex 

int u=v; 

Queue q[SIZE]; 

visited[v]=1; 

do 

{ 

for all vertices w adjacent to to u 

{ 

 if(visited[w]==0)//w is unvisited 

 { 

  q.AddQ(w); 

  visited[w]=1; 

 } 

} 

if(Q.Empty()) return; 

q.Delete(u); 

}while(1); 

} 
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AN EXAMPLE GRAPH 

 

 
1 

2 3 

4 5 7 6 

8 
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PERFORMING THE BREADTH FIRST 
TRAVERSAL 

 
void BFT(graph G,int n) 

{ 

int i; 

boolean visited[SIZE]; 

 

for(i=1;i<=n;i++) 

 visited[i]=0; 

for(i=1;i<=n;i++) 

 if(!visited[i]) 

  BFS[i}; 

} 
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DEPTH FIRST SEARCH 

BASIC IDEA 

 

 Starting vertex is arbitrarily chosen or determined by the 
problem. 

 Visits graph’s vertices by always moving away from last 
visited vertex to unvisited one, backtracks if no adjacent 
unvisited vertex is available. 

 Uses a stack 

 a vertex is pushed onto the stack when it’s reached for 
the first time 

 a vertex is popped off the stack when it becomes a dead 
end, i.e., when there is no adjacent unvisited vertex 
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ALGORITHM FOR DFS 
 

void DFS(int v) 

{ 

 visited[v]=1; 

 for each vertex w adjacent to v 

 { 

  if(!visited[w]) 

   DFS[w]; 

 } 

} 
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for the graph..... 

 

 
A 

B D 

C 

E 
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APPLICATIONS 

BREADTH FIRST SEARCH: 

 Greedy graph algorithms 
1. finding the minimum spanning tree using PRIM’S 

ALGORITHM 

2. single source (or) all pair shortest path using DIJKSTRA’S 
ALGORITHM 

3. NETWORK FLOW PROBLEM  

 Testing for connected components 

 

DEPTH FIRST SEARCH: 

 Testing for biconnected components(bi-connectivity) 

 for eg., checking for the connectivity of a network 
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CONNECTED COMPONENTS 

DEFINITION: 

 Two vertices in a graph are in the same connected 
component if and only if there is a path from one vertex to the 
other 

 

NOTE: 

 BFS algorithm can be used to test whether a graph is 
connected or not 

 If a graph G is connected then only 1 call to the function 
BFT(G,n) is made 

 The number of calls made to the BFT function can be 
used to roughly determine the number of “disconnected” 
components 



PRESENTED BY ARVIND KRISHNAA J 

DETERMINING A CONNECTED 
COMPONENT 

STRATEGY 

 

 All newly visited vertices on a call to BFS represent 
vertices in a connected component of G 

 To display the connected components modify BFS to 
put newly visited vertices into a list 

Consider for the graph discussed previously..... 

 

1 2 3 4 5 6 7 8 
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FOR THE DIRECTED GRAPH 

A B 

D 

C 

F 

E 
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THE DFS LIST IS 

A B C D F 

E 
As the number of calls made to the function is 
2 it means that the graph is not connected 
 
There are two sets of connected components 
represented above 
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SPANNING TREE 

 

BFS SPANNING TREE 1 

2 3 

4 5 7 6 

8 

BFS SPANNING TREE: 
 A spanning 
tree constructed by 
performing the 
Breadth first search 
of a graph 
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SPANNING TREE 

 

DFS SPANNING TREE 1 

2 3 

4 5 7 6 

8 

DFS SPANNING TREE: 
 A spanning 
tree constructed by 
performing the Depth 
first search of a graph 
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BICONNECTED COMPONENTS 

NOTE: Henceforth the word “Graph” would be used instead 
of the term “undirected Graph” 

 

ARTICULATION POINT: A vertex v in a connected graph is said 
to be an articulation point if and only if the the deletion of 
the vertex v and all its edges incident to it “disconnects” the 
graph into two or more non-empty components. 

 

Biconnected graph: A graph G is said to be biconnected if and 
only if it contains no articulation points 

 

Let us see an example.... 
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A connected graph 

1 

2 4 

3 

9 10 

7 

8 

5 6 

The articulation points 
are 
highlighted...removing 
them causes 
disconnection 
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POINTS TO NOTE  

LEMMA: Two biconnected components can have at most 
one vertex in common and this vertex is an articulation 
point. 

 

TRANSLATION: The common vertex of two biconnected 
components is an articulation point. 

 

NOTE: No edge can be in two different biconnected 
components as this would require two common 
vertices(violation of Lemma!!) 
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MAKING A CONNECTED GRAPH 
BICONNECTED 

TECHNIQUE: 

 Simply add “redundant” edges between 

the connected components that have the 

articulation point (say a) in common... 

 

for example the previously discussed connected 

graph can be made biconnected by adding the 

throbbing links(see next slide...if u r asleep pls 

continue...) 
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Connected to biconnected... 

1 

2 4 

3 

9 10 

7 

8 

5 6 

The articulation points 
are 
highlighted...removing 
them causes 
disconnection 
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SCHEME TO CONSTRUCT A 
BICONNECTED COMPONENT 

 

for each articulation point a 

{ 

 let 𝐵1, 𝐵2, … 𝐵𝑘 be the biconnected  

 components containing vertex a; 

  

 let 𝑣𝑖 , 𝑣𝑖 ≠a, be a vertex in 𝐵𝑖   , 

     1≤i≤k; 

 add to G the edges (𝑣𝑖 , 𝑣𝑖+1), 

     1≤i≤k; 

} 

      

 

 

 



SIMPLE ALGORITHM: 

 Construct a DFS spanning tree for the given graph 

 Have parameters dfn[u],L[u] 

 Do a preorder traversal of the spanning tree and 
compute dfn[u] for each node as the ith node that is 
visited 

 Compute the value of L[u] as 
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IDENTIFYING ARTICULATION POINTS 

L[u]=min{ dfn[u],min{L[w]|w is a child of u}, min{ dfn[w]  | (u,w) is a back edge} 



SIMPLE ALGORITHM: 

 Nodes which satisfy  

L[w]≥dfn[u], w being the children of u are 
identified as articulation points 

 

 SPECIAL CASE OF ROOT NODE 
Note: The root node is always listed as an articulation point 

  if root node has exactly one child 

  then exclude the root node from AP list 

  else 

  root node is also an articulation point 
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IDENTIFYING ARTICULATION POINTS 
contd... 



NODE  DFN[U] L[U] 

1 1 MIN{1,1,-}=1 

2 6 MIN{6,MIN{6,8,6,6},1}=1 

3 3 MIN{3,MIN{4,5,1}}=3 

4 4 MIN{2,1}=1 

5 7 MIN{7,min{8,6,6}}=6 

6 8 MIN{8,-,-}=8 

7 9 MIN{9,6,6}=6 

8 10 MIN{10,-,6}=6 

9 5 MIN{5,-,-}=5 

10 4 MIN{4,-,-}=4 
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COMPUTATIONS FOR THE GIVEN 
GRAPH 



  

 
Branch & Bound 



Review of Backtracking  

1.  Construct the state-space tree 
 
• nodes: partial solutions 
• edges: choices in extending partial solutions 
 
2. Explore the state space tree using depth-first search 
 
3. “Prune” nonpromising nodes 
• dfs stops exploring subtrees rooted at nodes that cannot 
lead to a solution and backtracks to such a node’s 
parent to continue the search 



Branch-and-Bound 

 An enhancement of backtracking 
 

 Applicable to optimization problems  

 

 Breadth first search(FIFO B&B) or D-search(LIFO B&B) is performed on the 
state space tree 
 

 For each node (partial solution) of a state-space tree, computes a bound on the 
value of the objective function for all descendants  of the node (extensions of 
the partial solution) 
 

 Uses the bound for: 

• ruling out certain nodes as “nonpromising” to prune the tree – if a node’s 
bound is not better than the best solution seen so far 

• guiding the search through state-space 

 



Select one element in each row of the cost matrix C so that:  
• no two selected elements are in the same column 
• the sum is minimized 
 
Example 
   Job 1  Job 2  Job 3 Job 4 
         Person a      9      2      7     8 
         Person b       6      4      3     7 
         Person c      5      8      1     8 
         Person d      7      6      9     4 
 
Lower bound: Any solution to this problem will have total cost 
                         at least: 2 + 3 + 1 + 4 (or 5 + 2 + 1 + 4)  
N people n jobs cost should be small. 
 

Example: Assignment Problem 



Example: First two levels of the state-space 
tree 



Explanation 

Select 1st element from first row i.e 9 

 

Select minimum from remaining rows 3, 1, 4 not from 1st column 

So 9+3+1+4 = 17. 

 

Select 2nd element from first row i.e 2 

 

Select minimum from remaining rows 3, 1, 4 not from 2nd column 

So 2+3+1+4 = 10. 

 

Select 3rd element from first row i.e 7 

 

Select minimum from remaining rows 3, 1, 4 not from 3rd 

column 

 

So 7+4+5+4 = 20. 

Last one it is 8+3+1+6 = 18 

 

 

 



Example (cont.)  



Explanation(contd...) 

1. Select 2nd element from first row i.e 2 

Select 1st element from second row i.e 6 

Select minimum from remaining rows 1, 4 not from 1st column 

So 2+6+1+4 = 13. 

 

2. Select 2nd element from first row i.e 2 

Cannot Select 2nd element from second row  

 

3. Select 2nd element from first row i.e 2 

Select 3rd element from third row i.e 3 

Select minimum from remaining rows 5, 4 not from 3rd column 

So 2+3+5+4 = 14. 

 

4. 2 + 7 + 1+7 =17 

Note: Promising node is live node a->2 is live node. 

 

 

 



Example: Complete state-space tree 



  

0/1 KNAPSACK 
PROBLEM 



Branch and bound 

  Applicable to 
optimization problem 

 The state space tree is 
generated using best 
first rule. 
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COMPARISON OF B&B AND 
BACKTRACKING 

Backtracking 
•  Not constrained but 

mostly applied to Non-
optimization problem 

  The state space tree is 
generated using DFS 

 



Greedy Algorithm for Knapsack Problem 

Step 1: Order the items in decreasing order of relative values:   
             v1/w1…  vn/wn   
Step 2: Select the items in this order skipping those that don’t  
             fit into the knapsack 
 
Example: The knapsack’s capacity is 15 

 i  Pi  Wi  Pi/Wi  
 1  $45  3  $15 
 2  $30  5  $  6 
 3  $45  9  $  5 
 4  $10  5  $  2 
 
 



Branch and Bound Scheme for Knapsack 
Problem 
 

Step 1: Order the items in decreasing order of relative values:   
 v1/w1…  vn/wn   

Step 2: For a given integer parameter k, 0 ≤ k ≤ n, generate all 
subsets of k items or less and for each of those that fit 
the knapsack, add the remaining items in decreasing 
order of their value to weight ratios 

Step 3: Find the most valuable subset among the subsets 
generated in Step 2 and return it as the algorithm’s 
output 

 



bound (maximum potential value) = currentValue + value 
of remaining objects fully placed + (K - totalSize) * (value 
density of item that is partially placed) 
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SOME THINGS TO NOTE 

totalSize = currentSize + size of remaining objects that can be fully placed 



       k-1 

bound = currentValue + ∑ vj + (K - totalSize) * (vk/sk) 

       j=i+1 

For the root node, currentSize = 0,  currentValue = 0 
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IN FORMULAE 

              k-1 
 totalSize = currentSize +  ∑ sj 
              j=i+1 
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THE STATE-SPACE TREE(WITH 
BOUND)[PERFORMING A BFS TRAVERSAL] 

HENCE THE 
FINAL 
ANWER SET 
WOULD BE 
 
X={1,0,1,0} 
 
i.e., objects 
1 and 3 are 
chosen...2 
and 4 are 
discarded 



WHAT THE PREVIOUS PROBLEM DID 

 

Step 1: We will construct the state space where each node contains the total current 
value in the knapsack, the total current size of the contents of the knapsack, 
and maximum potential value that the knapsack can hold.  In the algorithm, 
we will also keep a record of the maximum value of any node (partially or 
completely filled knapsack) found so far. 

 

Step 2: Perform the breadth first traversal of the state space tree computing 
the bound and totalsize 

 

Step 3: Discard(prune)those “non-promising nodes” which either have 

  (a) a lower bound than the other nodes at same level 

  (b) whose size exceeds the total knapsack capacity 

Step 4: The above method involving the BFS of the state space tree is called  

                FIFO BRANCH & BOUND ALGORITHM 



LC ALGORITHM(LEAST COST) 

 

 This is a generic form/generalization of both the BFS and DFS 
algorithms 

 In LC algorithm a traversal is performed on the state space tree 

 Each node is given a rank based on a minimization rule(also 
known as best first rule) f(x) 

(in case of the Knapsack problem the minimization rule can be 
stated as f(x)=--g(x),where g(x) is the maximization rule for the 
Knapsack problem) 

 Once all nodes have been ranked eliminate/prune the nodes 
with the poorest ranks. 

 Repeat till a feasible solution is obtained 

(sorry i cant go into too much further detail....its getting too 
mathematical...) 



Introduction 

NP-Hard AND NP-Completeness 



Polynomial Time: Algorithms whose solution is found in 
polynomial time 

eg., Sorting, searching etc., 

 

Non-polynomial Time: Algorithms which DO NOT take 
polynomial time to find the solution 

 

eg., Travelling salesperson problem (O(𝑛22𝑛)) 
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TWO KINDS OF ALGORITHMS  



 Problems for which there is no polynomial time 
complexity, are computationally related 

 There are two classes of such problems 

  1. NP  HARD AND  

 2. NP  COMPLETE 
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TWO KINDS OF ALGORITHMS  
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NP  COMPLETE 
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NP  HARD 
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SET REPRESENTATION OF THE ABOVE 
STATEMENTS 

 
 
 
 
 

NP 

P 
NP HARD 

NP COMPLETE 
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NON DETERMINISTIC ALGORITHMS 
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THREE NEW FUNCTIONS 
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SOME EXAMPLES OF NON-
DETERMINISTIC ALGORITHMS 



nondeterministic_search(x) 

{ 

 int j=choice(1,n); 

 if(A[j]==x) 

 { 

  cout<<j; 

  success(); 

 } 

 cout<<‘0’; 

 failure(); 

} 

PRESENTED BY ARVIND KRISHNAA J 

NON DETERMINISTIC SEARCHING 



voidnondeterministic_sort(int A[],int n) 

{ 

 int B[SIZE],i,j; 

 for(i=1;i<=n;i++) B[i]=0; 

 for(i=1;i<=n;i++) 

 { 

  j=choice(1,n); 

  if(B[j]) 

   failure(); 

  B[j]=A[i]; 

 } 

 for(i=1;i<=n;i++)//verify order 

  if(B[i] > B[i+1]) 

   failure(); 

 for(i=1;i<=n;i++) 

  cout<<B[i]<<‘ ‘; 

 success(); 

} 
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NON DETERMINISTIC SORTING 



void DCK(int G[]{SIZE],int n,int k) 

{ 

 S=null;//initially empty 

 for(int i=1;i<=k;i++) 

 { 

  int t=choice(1,n); 

  if(t is in S) 

   failure(); 

  S=S U {t}; 

 } 

 //now S contains k distinct vertices 

 for(all pairs (i,j) such that i is in S,j is in S 

and i!=j) 

  if((i,j) is not an edge of G) 

   failure(); 

 success(); 

} 
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NON DETERMINISTIC Clique 



void DKP(int p[],int w[],int n,int m,int r,int x[]) 

{ 

 int W=0,P=0; 

 for(int i=1;i<=n;i++) 

 { 

  x[i]=choice(0,1); 

  W+=x[i]*w[i]; 

  P+=x[i]*p[i]; 

 } 

 if((W>m) || (P < r)) 

  failure(); 

 else  

  success(); 

 

} 
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NON DETERMINISTIC KNAPSACK 



void eval(cnf E,int n) 

//determine whether the prop. formula is 
satisfiable 

//variables are x[1],x[2],x[3],...x[n] 

{ 

int x[SIZE]; 

//choose a truth value assignment 

for(int i=1;i<=n;i++) 

 x[i]=choice(0,1); 

if(E(x,n)) 

 success(); 

else  

 failure(); 

} 
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NON DETERMINISTIC SATISFIABLITY 
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SOME EXAMPLES OF NP HARD 

PROBLEMS 
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SOME EXAMPLES OF NP complete 

PROBLEMS 
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BASIC TEHNIQUES INVOLVED IN 
SOLVING NP  COMPLETE PROBLEMS 

OR IN SHORT 
PERFORMING A NON-
DETERMINISTIC ANALYSIS 
ON THE PROBLEM 



ONE FINAL QUESTION 
 

Remember this: “No problem is too tough if u spend enuf 
time on it” 

     -A great man 
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WHO IS THIS GREAT MAN??? 



THANK YOU!!!!! 
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