
PRESENTED BY ARVIND KRISHNAA J

DESIGN AND
ANALYSIS OF
ALGORITHMS

Remember this: “No problem is too tough if u spend enuf time on it”
 -A great man

Question:
𝑎𝑛 + 𝑏𝑛 = 𝑐𝑛

 find a,b,c

Answer: Etho
ingay irukku!!

𝑎𝑛 + 𝑏𝑛 = 𝑐𝑛

PRESENTED BY ARVIND KRISHNAA J

UNIT –V SYLLABUS

PRESENTED BY ARVIND KRISHNAA J

GRAPH TRAVERSALS

THERE ARE TWO DIFFERENT
GRAPH TRAVERSALS WHICH WE
WILL BE DEALING WITH

• BREADTH FIRST TRAVERSAL(BFS)

• DEPTH FIRST TRAVERSAL(DFS)

PRESENTED BY ARVIND KRISHNAA J

GRAPH TRAVERSALS

PRESENTED BY ARVIND KRISHNAA J

BREADTH FIRST SEARCH

BASIC IDEA:

 Visits graph vertices by moving across to all the
neighbors of last visited vertex b

 BFS uses a queue

 a vertex is inserted into queue when it is reached for
the first time, and is marked as visited.

 a vertex is removed from the queue, when it
identifies all unvisited vertices that are adjacent to
the vertex b

PRESENTED BY ARVIND KRISHNAA J

ALGORITHM FOR BFS

void BFS(int v)

{

//v being a starting vertex

int u=v;

Queue q[SIZE];

visited[v]=1;

do

{

for all vertices w adjacent to to u

{

 if(visited[w]==0)//w is unvisited

 {

 q.AddQ(w);

 visited[w]=1;

 }

}

if(Q.Empty()) return;

q.Delete(u);

}while(1);

}

PRESENTED BY ARVIND KRISHNAA J

AN EXAMPLE GRAPH

1

2 3

4 5 7 6

8

PRESENTED BY ARVIND KRISHNAA J

PERFORMING THE BREADTH FIRST
TRAVERSAL

void BFT(graph G,int n)

{

int i;

boolean visited[SIZE];

for(i=1;i<=n;i++)

 visited[i]=0;

for(i=1;i<=n;i++)

 if(!visited[i])

 BFS[i};

}

PRESENTED BY ARVIND KRISHNAA J

DEPTH FIRST SEARCH

BASIC IDEA

 Starting vertex is arbitrarily chosen or determined by the
problem.

 Visits graph’s vertices by always moving away from last
visited vertex to unvisited one, backtracks if no adjacent
unvisited vertex is available.

 Uses a stack

 a vertex is pushed onto the stack when it’s reached for
the first time

 a vertex is popped off the stack when it becomes a dead
end, i.e., when there is no adjacent unvisited vertex

PRESENTED BY ARVIND KRISHNAA J

ALGORITHM FOR DFS

void DFS(int v)

{

 visited[v]=1;

 for each vertex w adjacent to v

 {

 if(!visited[w])

 DFS[w];

 }

}

PRESENTED BY ARVIND KRISHNAA J

for the graph.....

A

B D

C

E

PRESENTED BY ARVIND KRISHNAA J

APPLICATIONS

BREADTH FIRST SEARCH:

 Greedy graph algorithms
1. finding the minimum spanning tree using PRIM’S

ALGORITHM

2. single source (or) all pair shortest path using DIJKSTRA’S
ALGORITHM

3. NETWORK FLOW PROBLEM

 Testing for connected components

DEPTH FIRST SEARCH:

 Testing for biconnected components(bi-connectivity)

 for eg., checking for the connectivity of a network

PRESENTED BY ARVIND KRISHNAA J

CONNECTED COMPONENTS

DEFINITION:

 Two vertices in a graph are in the same connected
component if and only if there is a path from one vertex to the
other

NOTE:

 BFS algorithm can be used to test whether a graph is
connected or not

 If a graph G is connected then only 1 call to the function
BFT(G,n) is made

 The number of calls made to the BFT function can be
used to roughly determine the number of “disconnected”
components

PRESENTED BY ARVIND KRISHNAA J

DETERMINING A CONNECTED
COMPONENT

STRATEGY

 All newly visited vertices on a call to BFS represent
vertices in a connected component of G

 To display the connected components modify BFS to
put newly visited vertices into a list

Consider for the graph discussed previously.....

1 2 3 4 5 6 7 8

PRESENTED BY ARVIND KRISHNAA J

FOR THE DIRECTED GRAPH

A B

D

C

F

E

PRESENTED BY ARVIND KRISHNAA J

THE DFS LIST IS

A B C D F

E
As the number of calls made to the function is
2 it means that the graph is not connected

There are two sets of connected components
represented above

PRESENTED BY ARVIND KRISHNAA J

SPANNING TREE

BFS SPANNING TREE 1

2 3

4 5 7 6

8

BFS SPANNING TREE:
 A spanning
tree constructed by
performing the
Breadth first search
of a graph

PRESENTED BY ARVIND KRISHNAA J

SPANNING TREE

DFS SPANNING TREE 1

2 3

4 5 7 6

8

DFS SPANNING TREE:
 A spanning
tree constructed by
performing the Depth
first search of a graph

PRESENTED BY ARVIND KRISHNAA J

BICONNECTED COMPONENTS

NOTE: Henceforth the word “Graph” would be used instead
of the term “undirected Graph”

ARTICULATION POINT: A vertex v in a connected graph is said
to be an articulation point if and only if the the deletion of
the vertex v and all its edges incident to it “disconnects” the
graph into two or more non-empty components.

Biconnected graph: A graph G is said to be biconnected if and
only if it contains no articulation points

Let us see an example....

PRESENTED BY ARVIND KRISHNAA J

A connected graph

1

2 4

3

9 10

7

8

5 6

The articulation points
are
highlighted...removing
them causes
disconnection

PRESENTED BY ARVIND KRISHNAA J

POINTS TO NOTE

LEMMA: Two biconnected components can have at most
one vertex in common and this vertex is an articulation
point.

TRANSLATION: The common vertex of two biconnected
components is an articulation point.

NOTE: No edge can be in two different biconnected
components as this would require two common
vertices(violation of Lemma!!)

PRESENTED BY ARVIND KRISHNAA J

MAKING A CONNECTED GRAPH
BICONNECTED

TECHNIQUE:

 Simply add “redundant” edges between

the connected components that have the

articulation point (say a) in common...

for example the previously discussed connected

graph can be made biconnected by adding the

throbbing links(see next slide...if u r asleep pls

continue...)

PRESENTED BY ARVIND KRISHNAA J

Connected to biconnected...

1

2 4

3

9 10

7

8

5 6

The articulation points
are
highlighted...removing
them causes
disconnection

PRESENTED BY ARVIND KRISHNAA J

SCHEME TO CONSTRUCT A
BICONNECTED COMPONENT

for each articulation point a

{

 let 𝐵1, 𝐵2, … 𝐵𝑘 be the biconnected

 components containing vertex a;

 let 𝑣𝑖 , 𝑣𝑖 ≠a, be a vertex in 𝐵𝑖 ,

 1≤i≤k;

 add to G the edges (𝑣𝑖 , 𝑣𝑖+1),

 1≤i≤k;

}

SIMPLE ALGORITHM:

 Construct a DFS spanning tree for the given graph

 Have parameters dfn[u],L[u]

 Do a preorder traversal of the spanning tree and
compute dfn[u] for each node as the ith node that is
visited

 Compute the value of L[u] as

PRESENTED BY ARVIND KRISHNAA J

IDENTIFYING ARTICULATION POINTS

L[u]=min{ dfn[u],min{L[w]|w is a child of u}, min{ dfn[w] | (u,w) is a back edge}

SIMPLE ALGORITHM:

 Nodes which satisfy

L[w]≥dfn[u], w being the children of u are
identified as articulation points

 SPECIAL CASE OF ROOT NODE
Note: The root node is always listed as an articulation point

 if root node has exactly one child

 then exclude the root node from AP list

 else

 root node is also an articulation point

PRESENTED BY ARVIND KRISHNAA J

IDENTIFYING ARTICULATION POINTS
contd...

NODE DFN[U] L[U]

1 1 MIN{1,1,-}=1

2 6 MIN{6,MIN{6,8,6,6},1}=1

3 3 MIN{3,MIN{4,5,1}}=3

4 4 MIN{2,1}=1

5 7 MIN{7,min{8,6,6}}=6

6 8 MIN{8,-,-}=8

7 9 MIN{9,6,6}=6

8 10 MIN{10,-,6}=6

9 5 MIN{5,-,-}=5

10 4 MIN{4,-,-}=4

PRESENTED BY ARVIND KRISHNAA J

COMPUTATIONS FOR THE GIVEN
GRAPH

Branch & Bound

Review of Backtracking

1. Construct the state-space tree

• nodes: partial solutions
• edges: choices in extending partial solutions

2. Explore the state space tree using depth-first search

3. “Prune” nonpromising nodes
• dfs stops exploring subtrees rooted at nodes that cannot
lead to a solution and backtracks to such a node’s
parent to continue the search

Branch-and-Bound

 An enhancement of backtracking

 Applicable to optimization problems

 Breadth first search(FIFO B&B) or D-search(LIFO B&B) is performed on the
state space tree

 For each node (partial solution) of a state-space tree, computes a bound on the
value of the objective function for all descendants of the node (extensions of
the partial solution)

 Uses the bound for:

• ruling out certain nodes as “nonpromising” to prune the tree – if a node’s
bound is not better than the best solution seen so far

• guiding the search through state-space

Select one element in each row of the cost matrix C so that:
• no two selected elements are in the same column
• the sum is minimized

Example
 Job 1 Job 2 Job 3 Job 4
 Person a 9 2 7 8
 Person b 6 4 3 7
 Person c 5 8 1 8
 Person d 7 6 9 4

Lower bound: Any solution to this problem will have total cost
 at least: 2 + 3 + 1 + 4 (or 5 + 2 + 1 + 4)
N people n jobs cost should be small.

Example: Assignment Problem

Example: First two levels of the state-space
tree

Explanation

Select 1st element from first row i.e 9

Select minimum from remaining rows 3, 1, 4 not from 1st column

So 9+3+1+4 = 17.

Select 2nd element from first row i.e 2

Select minimum from remaining rows 3, 1, 4 not from 2nd column

So 2+3+1+4 = 10.

Select 3rd element from first row i.e 7

Select minimum from remaining rows 3, 1, 4 not from 3rd

column

So 7+4+5+4 = 20.

Last one it is 8+3+1+6 = 18

Example (cont.)

Explanation(contd...)

1. Select 2nd element from first row i.e 2

Select 1st element from second row i.e 6

Select minimum from remaining rows 1, 4 not from 1st column

So 2+6+1+4 = 13.

2. Select 2nd element from first row i.e 2

Cannot Select 2nd element from second row

3. Select 2nd element from first row i.e 2

Select 3rd element from third row i.e 3

Select minimum from remaining rows 5, 4 not from 3rd column

So 2+3+5+4 = 14.

4. 2 + 7 + 1+7 =17

Note: Promising node is live node a->2 is live node.

Example: Complete state-space tree

0/1 KNAPSACK
PROBLEM

Branch and bound

 Applicable to
optimization problem

 The state space tree is
generated using best
first rule.

PRESENTED BY ARVIND KRISHNAA J

COMPARISON OF B&B AND
BACKTRACKING

Backtracking
• Not constrained but

mostly applied to Non-
optimization problem

 The state space tree is
generated using DFS

Greedy Algorithm for Knapsack Problem

Step 1: Order the items in decreasing order of relative values:
 v1/w1… vn/wn
Step 2: Select the items in this order skipping those that don’t
 fit into the knapsack

Example: The knapsack’s capacity is 15

 i Pi Wi Pi/Wi
 1 $45 3 $15
 2 $30 5 $ 6
 3 $45 9 $ 5
 4 $10 5 $ 2

Branch and Bound Scheme for Knapsack
Problem

Step 1: Order the items in decreasing order of relative values:
 v1/w1… vn/wn

Step 2: For a given integer parameter k, 0 ≤ k ≤ n, generate all
subsets of k items or less and for each of those that fit
the knapsack, add the remaining items in decreasing
order of their value to weight ratios

Step 3: Find the most valuable subset among the subsets
generated in Step 2 and return it as the algorithm’s
output

bound (maximum potential value) = currentValue + value
of remaining objects fully placed + (K - totalSize) * (value
density of item that is partially placed)

PRESENTED BY ARVIND KRISHNAA J

SOME THINGS TO NOTE

totalSize = currentSize + size of remaining objects that can be fully placed

 k-1

bound = currentValue + ∑ vj + (K - totalSize) * (vk/sk)

 j=i+1

For the root node, currentSize = 0, currentValue = 0

PRESENTED BY ARVIND KRISHNAA J

IN FORMULAE

 k-1
 totalSize = currentSize + ∑ sj
 j=i+1

PRESENTED BY ARVIND KRISHNAA J

THE STATE-SPACE TREE(WITH
BOUND)[PERFORMING A BFS TRAVERSAL]

HENCE THE
FINAL
ANWER SET
WOULD BE

X={1,0,1,0}

i.e., objects
1 and 3 are
chosen...2
and 4 are
discarded

WHAT THE PREVIOUS PROBLEM DID

Step 1: We will construct the state space where each node contains the total current
value in the knapsack, the total current size of the contents of the knapsack,
and maximum potential value that the knapsack can hold. In the algorithm,
we will also keep a record of the maximum value of any node (partially or
completely filled knapsack) found so far.

Step 2: Perform the breadth first traversal of the state space tree computing
the bound and totalsize

Step 3: Discard(prune)those “non-promising nodes” which either have

 (a) a lower bound than the other nodes at same level

 (b) whose size exceeds the total knapsack capacity

Step 4: The above method involving the BFS of the state space tree is called

 FIFO BRANCH & BOUND ALGORITHM

LC ALGORITHM(LEAST COST)

 This is a generic form/generalization of both the BFS and DFS
algorithms

 In LC algorithm a traversal is performed on the state space tree

 Each node is given a rank based on a minimization rule(also
known as best first rule) f(x)

(in case of the Knapsack problem the minimization rule can be
stated as f(x)=--g(x),where g(x) is the maximization rule for the
Knapsack problem)

 Once all nodes have been ranked eliminate/prune the nodes
with the poorest ranks.

 Repeat till a feasible solution is obtained

(sorry i cant go into too much further detail....its getting too
mathematical...)

Introduction

NP-Hard AND NP-Completeness

Polynomial Time: Algorithms whose solution is found in
polynomial time

eg., Sorting, searching etc.,

Non-polynomial Time: Algorithms which DO NOT take
polynomial time to find the solution

eg., Travelling salesperson problem (O(𝑛22𝑛))

PRESENTED BY ARVIND KRISHNAA J

TWO KINDS OF ALGORITHMS

 Problems for which there is no polynomial time
complexity, are computationally related

 There are two classes of such problems

 1. NP HARD AND

 2. NP COMPLETE

PRESENTED BY ARVIND KRISHNAA J

TWO KINDS OF ALGORITHMS

PRESENTED BY ARVIND KRISHNAA J

NP COMPLETE

PRESENTED BY ARVIND KRISHNAA J

NP HARD

PRESENTED BY ARVIND KRISHNAA J

SET REPRESENTATION OF THE ABOVE
STATEMENTS

NP

P
NP HARD

NP COMPLETE

PRESENTED BY ARVIND KRISHNAA J

NON DETERMINISTIC ALGORITHMS

PRESENTED BY ARVIND KRISHNAA J

THREE NEW FUNCTIONS

PRESENTED BY ARVIND KRISHNAA J

SOME EXAMPLES OF NON-
DETERMINISTIC ALGORITHMS

nondeterministic_search(x)

{

 int j=choice(1,n);

 if(A[j]==x)

 {

 cout<<j;

 success();

 }

 cout<<‘0’;

 failure();

}

PRESENTED BY ARVIND KRISHNAA J

NON DETERMINISTIC SEARCHING

voidnondeterministic_sort(int A[],int n)

{

 int B[SIZE],i,j;

 for(i=1;i<=n;i++) B[i]=0;

 for(i=1;i<=n;i++)

 {

 j=choice(1,n);

 if(B[j])

 failure();

 B[j]=A[i];

 }

 for(i=1;i<=n;i++)//verify order

 if(B[i] > B[i+1])

 failure();

 for(i=1;i<=n;i++)

 cout<<B[i]<<‘ ‘;

 success();

}

PRESENTED BY ARVIND KRISHNAA J

NON DETERMINISTIC SORTING

void DCK(int G[]{SIZE],int n,int k)

{

 S=null;//initially empty

 for(int i=1;i<=k;i++)

 {

 int t=choice(1,n);

 if(t is in S)

 failure();

 S=S U {t};

 }

 //now S contains k distinct vertices

 for(all pairs (i,j) such that i is in S,j is in S

and i!=j)

 if((i,j) is not an edge of G)

 failure();

 success();

}
PRESENTED BY ARVIND KRISHNAA J

NON DETERMINISTIC Clique

void DKP(int p[],int w[],int n,int m,int r,int x[])

{

 int W=0,P=0;

 for(int i=1;i<=n;i++)

 {

 x[i]=choice(0,1);

 W+=x[i]*w[i];

 P+=x[i]*p[i];

 }

 if((W>m) || (P < r))

 failure();

 else

 success();

}

PRESENTED BY ARVIND KRISHNAA J

NON DETERMINISTIC KNAPSACK

void eval(cnf E,int n)

//determine whether the prop. formula is
satisfiable

//variables are x[1],x[2],x[3],...x[n]

{

int x[SIZE];

//choose a truth value assignment

for(int i=1;i<=n;i++)

 x[i]=choice(0,1);

if(E(x,n))

 success();

else

 failure();

}

PRESENTED BY ARVIND KRISHNAA J

NON DETERMINISTIC SATISFIABLITY

PRESENTED BY ARVIND KRISHNAA J

SOME EXAMPLES OF NP HARD

PROBLEMS

PRESENTED BY ARVIND KRISHNAA J

SOME EXAMPLES OF NP complete

PROBLEMS

PRESENTED BY ARVIND KRISHNAA J

BASIC TEHNIQUES INVOLVED IN
SOLVING NP COMPLETE PROBLEMS

OR IN SHORT
PERFORMING A NON-
DETERMINISTIC ANALYSIS
ON THE PROBLEM

ONE FINAL QUESTION

Remember this: “No problem is too tough if u spend enuf
time on it”

 -A great man

PRESENTED BY ARVIND KRISHNAA J

WHO IS THIS GREAT MAN???

THANK YOU!!!!!

PRESENTED BY ARVIND KRISHNAA J

