Quick Sort



Invented by Hoare

* C.A.R. Tony Hoare, at age 26, invented his algorithm in 1960 while
trying to sort words for a machine translation project from Russian to
English. Says Hoare, “My first thought on how to do this was
bubblesort and, by an amazing stroke of luck, my second thought was
Quicksort.” It is hard to disagree with his overall assessment: “I have
been very lucky. What a wonderful way to start a career in
Computing, by discovering a new sorting algorithm!” [Hoa96]. Twenty
years later, he received the TuringAward for “fundamental
contributions to the definition and design of programming
languages”; in 1980, he was also knighted for services to education
and computer science.



QuickSort

Definitely a “greatest hit” algorithm
Prevalent in practice
Beautiful analysis

O(n logn) time “on average”, works in place
— i.e., minimal extra memory needed

See course site for optional lecture notes



The Sorting Problem
Input : array ‘of n numbers, unsorted
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Output : Same numbers, sorted in increasing order
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Assume : all array entries distinct.
Exercise : extend QuickSort to handle duplicate entrles




Partitioning Around a Pivot

Key ldea : partition array around a pivot element.

—-Pick element of SIENTEAT
array ™ pivot

--Rearrange array so that )
-- Left of pivot => less than pivot Er o3t s\g )

--Right of pivot => greater than pivot

< pivot > pivot

Note : puts pivot in its “righful position”.



Two Cool Facts About Partition

1. Linear O(n) time, no extra memory
[see next video]

2. Reduces problem size



QuickSort (array A, length n)
-If n=1 return

-p = ChoosePivot(A,n)
-Partition A around p \<e \o\ ~e )
-Recursively sort 1%t part
-Recursively sort 2" part

[ currently unimplemented |

1t part 2" part



Not a Inplace Implementation

Note : Using O(n) extra memory, easy to partition around
pivot in O(n) time.
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Inplace Implementation

Assume : pivot = 1%t element of array
[ if not, swap pivot <--> 1t element as preprocessing step |

High — Level Idea : FQ \ < >\ % \J

Already partitioned unpartitioned

-Single scan through array
- invariant : everything looked at so far is partitioned
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Pseudo code for partition

Partition (A,l,r) [ input corresponds to All...r]]
- p:= All]
-ii=1+1
-forj=l+1tor
-ifA[jl<p [if A[j] > p, do nothing ]
-swap A[j] and A[i]
-li= i+l

swap

- swap A[l] and A[i-1] [—L
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Running time

Running time = O(n), where n =r—1|+ 1is the length of the input
(sub) array.

Reason : O(1) work per array entry.

Also : clearly works in place (repeated swaps)



Outline of QuickSort

The Partition subroutine
Correctness proof [optional]
Choosing a good pivot
Randomized QuickSort
Analysis

— A Decomposition Principle
— The Key Insight
— Final Calculations



Quicksort

* Select a pivot (partitioning element) — here, the first
element

e Rearrange the list so that all the elements in the first s
positions are smaller than or equal to the pivot and all the
elements in the remaining n-s positions are larger than or
equal to the pivot (see next slide for an algorithm)
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e Exchange the pivot with the last element in the first (i.e.,
<) subarray — the pivot is now in its final position

 Sort the two subarrays recursively



Algorithm

ALGORITHM Quicksort(A[l..r])

/ISorts a subarray by quicksort
/[Input: A subarray A[l..r] of A[0..n — 1], defined by its left and right indices
/] [ and r
//Output: Subarray A[/..r] sorted in nondecreasing order
if [ <r
s < Partition(A[l..r]) //s is a split position
Quicksort(All..s — 1])
Quicksort(Als + 1..r])



ALGORITHM Partition(All..r])

/[Partitions a subarray by using its first element as a pivot
//Input: A subarray A[l..r] of A[0..n — 1], defined by its left and right
// indices/ and r (I <r)
//Output: A partition of A[l..r], with the split position returned as
/! this function’s value
p < A[l]
i1, j<r+1
repeat
repeat i < i + luntil A[i]>p
repeat j <— j — luntil A[j]<p
swap(Al[i], A[j])
until i > j
swap(A[i], A[j]) //undo last swap wheni > j
swap(A[l], A[j])
return j



Best case

Cresiin) = 2Cpers(n 2y +n forn =1, Cpeull) =10



Quicksort Example
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FIGURE 4.3 Example of Quicksort operation. (a) The array’s transformations with pivots
shown in bold. (b) The tree of recursive calls to Quicksort with input values
{ and r of subarray bounds and split position s of a partition obtained.



Analysis of Quicksort

* Best case: split in the middle — ©(n log n)
* Worst case: sorted array! — ©(n?)
* Average case: random arrays — ©O(n log n)

* Improvements:
* better pivot selection: median of three partitioning
e switch to insertion sort on small subfiles
 elimination of recursion
These combine to 20-25% improvement

* Considered the method of choice for internal sorting of large files
(n = 10000)
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