
DYNAMIC PROGRAMMING

• Problems like knapsack problem, shortest 
path can be solved by greedy method in 
which optimal decisions can be made one at 
a time. 

• For many problems, it is not possible to 
make stepwise decision in such a manner 
that the sequence of decisions made is 
optimal.
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DP Idea
• Dynamic Programming  is  a general algorithm design 

technique  for solving problems defined by recurrences 
with overlapping  subproblems

• Invented by American mathematician Richard Bellman in 
the  1950s to solve optimization problems and later 
assimilated by CS

• “Programming” here means “planning”
• Main idea:

• set up a recurrence relating a solution to a larger instance  to solutions 
of some smaller instances

• - solve smaller instances once
• record solutions in a table 
• extract solution to the initial instance from that table
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Contd…

• The Cause of inefficiency in divide-and-
conquer

• After division …
– Smaller instances are unrelated, e.g., mergesort
– Smaller instances are related, e.g., fibonacci

• repeatedly solve common instances
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Contd…

• Dynamic programming
– bottom-up approach
– use an array (table) to save solutions to small 

instances



V. Balasubramanian 5

Fibonacci
• The same Fibonacci series algorithm in Dynamic programming is as follows:
• Dynamic programming Algorithm nth Fibonacci Term (Iterative) 

– Problem: Determine the nth term in the Fibonacci sequence.
– Inputs: a nonnegative integer n.
– Outputs : fib2, the nth term in the Fibonacci sequence.

• int fib 2 (int n) {
• index i;
• int f[0 .. n]; // array to store Fibonacci values
• f[ 0 ] = 0;
• if (n > 0){
• f[ 1 ] = 1;
• for (i = 2; i<= n; i++)
• f[ i ] = f[i - 1] + f [i -2 ]; }
• return f[ n ];
• } 
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Binomial coefficent
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The binomial coefficient

Algorithms (eadeli@iust.ac.ir)7

• Definition

• Recursive definition
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The algorithm

8

• Algorithm 3.1: Binomial Coefficient Using Divide-
and-Conquer 
– Problem: Compute the binomial coefficient.
– Inputs: nonnegative integers n and k, where k ≤ n.
– Outputs: bin, the binomial coefficient  .

int bin (int n, int k) {
if ( k = = 0 || n = = k)

return 1;
else 

return bin (n-1, k - 1)+bin (n - 1, k);
} 
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Using dynamic programming

9

• Using an array B to store coefficients
• Steps:

– Establish a recursive property:

– Solve an instance of the problem in a bottom-up 
fashion by computing the rows in B in sequence 
starting with the first row

B i j
B i j B i j j i

j or j i[ ][ ]
[ ][ ] [ ][ ]
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Compute sequence of rows

10• Let’s compute B[4][2]
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The algorithm

11

• Algorithm 3.2: Binomial Coefficient Using Dynamic 
Programming 
– Problem: Compute the binomial coefficient.
– Inputs: nonnegative integers n and k, where k ≤ n.
– Outputs: bin 2, the binomial coefficient   
int bin2 (int n, int k) {

index i, j;
int B[0..n] [0..k];
for (i = 0; i <= n; i++)

for (j = 0; j <= minimum (i, k); j++)
if (j = = 0 || j = = i)

B[i][ j] = 1;
else

B[i][j] = B[i - 1][j - 1] + B[i - 1] [j]; 
return B[n][k];

} 



DYNAMIC PROGRAMMING 
(Contd..)

Example: 
• Suppose a shortest path from vertex i to vertex j is 

to be found. 
• Let Ai be vertices adjacent from vertex i. which of 

the vertices of Ai should be the second vertex on 
the path?

• One way to solve the problem is to enumerate all 
decision sequences and pick out the best.

• In dynamic programming the principle of 
optimality is used to reduce the decision 
sequences.
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DYNAMIC PROGRAMMING 
(Contd..)

Principle of optimality: 
• An optimal sequence of decisions has the property 

that whatever the initial state and decisions are, the 
remaining decisions must constitute an optional 
decision sequence with regard to the state 
resulting from the first decision.

• In the greedy method only one decision sequence 
is generated.

• In dynamic programming many decision 
sequences may be generated.
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Contd…

• An optimal solution to an instance of a 
problem always contains optimal solutions to 
all subinstances

• ensures that an optimal solution to an instance 
can be obtained by combining optimal 
solutions to subinstances

• It is necessary to show that the principle 
applies before using dynamic programming to 
obtain the solution



DYNAMIC PROGRAMMING 
(Contd..)

Example:
• [0/1 knapsack problem]:the xi’s in 0/1 knapsack problem is 

restricted to either 0 or 1.
• Using KNAP(l,j,y) to represent the problem  

Maximize ∑pixi
l≤i≤j

subject to ∑wixi ≤ y,       ………………..(1)    
l≤i≤j

xi = 0 or  1   l≤i≤j

The 0/1 knapsack problem is KNAP(l,n,M).



DYNAMIC PROGRAMMING 
(Contd..)

• Let y1 ,y2 , …… ,yn be an optimal sequence of 0/l values for 
x1 ,x2 …..,xn respectively.

• If  y1 = 0 then y2,y3,……,yn must constitute an optimal 
sequence for KNAP (2,n,M).

• If it does not, then y1 ,y2 , …… ,yn is not an optimal 
sequence for KNAP (1, n, M). If y1=1, then y1 ,y2 , …… ,yn
is an optimal sequence for KNAP(2,n,M-wi ).

• If it is not there is another 0/l sequence z1,z2,….,zn such that 
∑pizi has greater value. 

• Thus the principal of optimality holds.
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DYNAMIC PROGRAMMING 
(Contd..)

• Let gj(y) be the value of an optimal solution to 
KNAP (j+1,n,y).

• Then g0(M) is the value of an optimal solution to 
KNAP(l,n,M).

• From the principal of  optimality 
g0(M) = max{g1(M), g1(M-W1) + P1)} 

• g0(M) is the maximum profit which is the value of 
the optimal solution .



DYNAMIC PROGRAMMING 
(Contd..)

• The principal of optimality can be equally applied 
to intermediate states and decisions as has been 
applied to initial states and decisions.

• Let y1,y2,…..yn be an optimal solution to 
KNAP(l,n,M). 

• Then for each j l≤j≤n , yi,..,yj and yj+1,….,yn must 
be optimal solutions to the problems 
KNAP(1,j,∑wiyi)                                                               

l≤i≤j
and KNAP(j+1,n,M-∑wiyi) respectively. 

l≤i≤j
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DYNAMIC PROGRAMMING 
(Contd..)

• Then gi(y) = max{gi+1(y)             (xi +1= 0 case),
gi+1(y-wi +1) + pi+1}…(1) (xi +1= 1case),

• Equation (1) is known as recurrence relation. 
• Dynamic programming algorithms solve the relation 

to obtain a solution to the given problems.
• To solve 0/1 knapsack problem , we use the 

knowledge gn(y) = 0 for all y, because gn(y) is on 
optimal solution (profit) to the problem

KNAP(n+1, n, y) which is obviously zero for any y. 
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DYNAMIC PROGRAMMING 
(Contd..)

• Substituting  i = n -1 and using gn(y)= 0 in the 
above relation(1), we obtain gn-1(y). 

• Then using gn-1(y), we obtain gn-2(y) and so on till 
we get g0(M) (with i=0) which is the solution of 
the knapsack problem. 

• There are two approaches to solving the 
recurrence relation 1 

• (1) Forward approach and  (2) Backward approach
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DYNAMIC PROGRAMMING 
(Contd..)

• In the forward approach ,decision xi is made 
in terms of  optimal decision Sequences for 
xi+1……..xn (i.e  we look ahead).

• In the backward approach, decision xi is in 
terms of optimal decision sequences for 
x1……xi-1(i.e we look backward).
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DYNAMIC PROGRAMMING 
(Contd..)

• For the 0/l knapsack problems
Gi(y)=max{gi+1(y),gi+1(y-wi+1)+Pi+1}………(1)

• Is the forward approach as gn-1(y) is obtained 
using gn(y).

• fi(y) = max{fj-1(y), fj-1(y-wi) + pj}  …………..(2)
• is the backward approach, fj(y) is the value of 

optimal solution to Knap(i,j,Y). (2) may be solved 
by beginning with 

fi(y) = 0 for all y ≥ 0 and fi(y) = -infinity for
y < 0.
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Example

• Consider 0/1 knapsack problem which has 3 
objects n=3, their weights are w1=2, w2=3, 
w3=4, their profits are p1=1, p2=2, p3=5 
and knapsack capacity m=6. compute g0(6).
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solution
g0(6) = max{g1(6), g1(6-W1) + P1)} 

= max{g1(6), g1(6-2) + 1)} 
g0(6) = max{g1(6), g1(4) + 1)} 

g1(6) = max{g2(6), g2(6-W2) + P2)} 
g1(6) = max{g2(6), g2(3) + 2)} 

g2(6) = max{g3(6), g3(6-W3) + P3)} 
g2(6) = max{0, g3(2) + 5)} = max{0, 5)} = 5.

g2(3) = max{g3(3), g3(3-W3) + P3)} 
= max{0, g3(3-4) + 5)} = max{0, -infinity)} = 0
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Contd…

g1(4) = max{g2(4), g2(4-W2) + P2)} 
= max{g2(4), g2(4-3) + 2)} 
= max{g2(4), g2(1) + 2)} 

g2(4) = max{g3(4), g3(4-4) + 5)} = max{0, 5)} = 5
g1(4) = max{5, g2(1) + 2)}
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Contd…

g2(1) = max{g3(1), g3(1-W3) + P3)} 
g2(6) = max{0, g3(1-4) + 5)} = max{0, -infinity + 5)} = 0.

G1(4)  = max{5, 0+2} = 5.

G0(6) = max { 5, 5 +1} = 6.
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FEATURES OF DYNAMIC 
PROGRAMMING SOLUTIONS

• It is easier to obtain the recurrence relation using 
backward approach.

• Dynamic programming algorithms often have 
polynomial complexity.

• Optimal solution to sub problems are retained so 
as to avoid recomputing their values.
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OPTIMAL BINARY SEARCH 
TREES

• Definition: binary search tree (BST) A binary 
search tree is a binary tree; either it is empty or 
each node contains an identifier and

(i) all identifiers in the left sub tree of T are less 
than the identifiers in the root node T.

(ii) all the identifiers the right sub tree are greater 
than the identifier in the root node T.

(iii) the right and left sub tree are also BSTs.
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Optimal Binary Search Trees
Problem: Given Problem: Given n n keys keys aa1 1 < < ……< < aan n and probabilities and probabilities pp11 ≤≤ …… ≤≤ ppnn

searching for them, find a BST with a minimumsearching for them, find a BST with a minimum
average number of comparisons in successful seaaverage number of comparisons in successful search.rch.

Since total number of BSTs with Since total number of BSTs with n n nodes is given by nodes is given by 
C(2C(2nn,,nn)/()/(nn+1), which grows exponentially, brute force is hopeless. +1), which grows exponentially, brute force is hopeless. 

Example: What is an optimal BST for keys Example: What is an optimal BST for keys AA, , BB,, CC, and , and D D withwith
search probabilities 0.1, 0.2, 0.4, and 0.3, rsearch probabilities 0.1, 0.2, 0.4, and 0.3, respectively?espectively?
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DP for Optimal BST Problem
Let Let CC[[i,ji,j] be minimum average number of comparisons made in ] be minimum average number of comparisons made in 
T[T[i,ji,j], optimal BST for keys ], optimal BST for keys aaii < < ……< < aajj ,, where 1 where 1 ≤≤ i i ≤≤ j j ≤≤ n. n. 
Consider optimal BST among all BSTs with some Consider optimal BST among all BSTs with some aak  k  ((i i ≤≤ k k ≤≤ jj ) ) 
as their root; T[as their root; T[i,ji,j] is the best among them. ] is the best among them. 

a

Optimal
BST for

a   , ...,  a

Optimal
BST for

a      , ...,  ai

k

k-1 k+1 j

CC[[i,ji,j] =] =

min  {min  {ppk k ·· 1 +1 +

∑∑ ppss (level (level aas s in T[in T[i,ki,k--1] +1)1] +1) ++

∑∑ ppss (level (level aass in T[in T[k+k+11,j,j] +1)}] +1)}

i i ≤≤ k k ≤≤ jj

s s == ii

kk--11

s =s =k+k+11

jj
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Example:   key              A     B     C     D
probability   0.1   0.2   0.4  0.3

The tables below are filled diagonal by diagonal: the left one iThe tables below are filled diagonal by diagonal: the left one is filled s filled 
using the recurrence using the recurrence 

CC[[i,ji,j] = ] = min {min {CC[[ii,,kk--1] + 1] + CC[[kk+1,+1,jj]} + ]} + ∑∑ pps ,    s ,    CC[[i,ii,i] = ] = ppi i ;;

the right one, for treesthe right one, for trees’’ roots, records roots, records kk’’s values giving the minimas values giving the minima

05
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.202
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0

5
44
333
3322
33211
43210

i i ≤≤ k k ≤≤ jj s s == ii

jj

optimal BSToptimal BST

B

A

C

D

i i 
jj

i i 
jj
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Optimal Binary Search Trees



V. Balasubramanian 33

Analysis DP for Optimal BST 
Problem

Time efficiency:  Time efficiency:  ΘΘ((nn33) but can be reduced to ) but can be reduced to ΘΘ((nn22)) by takingby taking
advantage of monotonicity of entriadvantage of monotonicity of entries in thees in the
root table, i.e., root table, i.e., RR[[i,ji,j] is always in the range ] is always in the range 
between between RR[[i,ji,j--1] and R[1] and R[ii+1,j]+1,j]

Space efficiency: Space efficiency: ΘΘ((nn22))

Method can be expended to include unsuccessful searchesMethod can be expended to include unsuccessful searches
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ALGORITHM TO SEARCH FOR AN 
IDENTIFIER IN THE TREE ‘T’.

Procedure SEARCH (T X I)
// Search T for X, each node had fields LCHILD, 

IDENT, RCHILD//
// Return address i pointing to the identifier X// 

//Initially T is pointing to tree.  
//ident(i)=X or i=0 //

i T
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Algorithm to search for an identifier in the tree 
‘T’(Contd..)

While i ≠ 0 do
case : X < Ident(i) : i LCHILD(i)

: X = IDENT(i) : RETURN i
: X > IDENT(i) : I RCHILD(i)

endcase
repeat
end SEARCH
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Optimal Binary Search trees -
Example

If

For while

repeat

loop
if each identifier is searched with equal probability the 
average number of comparisons for the above tree are 
1+2+2+3+4 = 12/5.

5
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OPTIMAL BINARY SEARCH 
TREES (Contd..)

• Let us assume that the given set of 
identifiers are {a1,a2,……..an} with 
a1<a2<…….<an.

• Let Pi be the probability with which we are 
searching for ai.

• Let Qi be the probability that identifier x 
being searched for is such that ai<x<ai+1
0≤i≤n, and a0=-∞ and an+1=+∞.
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OPTIMAL BINARY SEARCH 
TREES (Contd..)

• Then ∑Qi is the probability of an unsuccessful search.
0≤i≤ n                             
∑P(i) + ∑Q(i) = 1.    Given the data,   
1≤i≤n    0≤i≤n                               

let us construct one optimal binary search tree for 
(a1……….an).

• In place of empty sub tree, we add external nodes 
denoted with squares. 

• Internal nodes are denoted as circles.
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OPTIMAL BINARY SEARCH 
TREES (Contd..)

If

For while

repeat

loop
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Construction of optimal binary search 
trees

• A BST with n identifiers will have n internal 
nodes and n+1 external nodes. 

• Successful search terminates at internal nodes 
unsuccessful search terminates at external nodes.

• If a successful search terminates at an internal 
node at level L, then L iterations of the loop in the 
algorithm are needed. 

• Hence the expected cost contribution from the 
internal nodes for ai is P(i) *  level(ai). 
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OPTIMAL BINARY SEARCH 
TREES (Contd..)

• Unsuccessful searche terminates at external nodes 
i.e. at i = 0. 

• The identifiers not in the binary search tree may 
be partitioned into n+1 equivalent classes 
Ei 0≤i≤n.
Eo contains all X such that X≤ai

Ei contains all X such that a<X<=ai+1   1≤i≤n
En contains all X such that X > an
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OPTIMAL BINARY SEARCH 
TREES (Contd..)

• For identifiers in the same class Ei, the 
search terminate at the same external node.

• If the failure node for Ei is at level L, then 
only L-1 iterations of the while loop are 
made 
∴The cost contribution of the failure node 
for Ei is Q(i) * level (Ei )   -1)
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OPTIMAL BINARY SEARCH 
TREES (Contd..)

• Thus the expected cost of a binary search tree is:
∑P(i) * level (ai)  + ∑Q(i) * level(Ei) – 1)  ……(2)

1≤i≤n                      0≤i≤n    
• An optimal binary search tree for {a1…….,an} is a 

BST for which (2) is minimum .
• Example: Let {a1,a2, a3}={do, if, stop}
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OPTIMAL BINARY SEARCH 
TREES (Contd..)

Level 1 stop if do

Level 2    if Q(3) do stop     if
Q(2)

Level 3    do stop

Q(0)         Q(1) 
(a)                     (b)                  (c)

{a1,a2,a3}={do,if,stop}
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OPTIMAL BINARY SEARCH 
TREES (Contd..)

stop do

do stop
if

if

(d) (c)
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OPTIMAL BINARY SEARCH 
TREES (Contd..)

• With equal probability P(i)=Q(i)=1/7.
• Let us find an OBST out of these.
• Cost(tree a)=∑P(i)*level a(i) +∑Q(i)*level (Ei) -1

1≤i≤n                  0≤i≤n
(2-1)   (3-1) (4-1) (4-1)

=1/7[1+2+3  + 1    + 2  +  3   + 3 ]     = 15/7
• Cost (tree b) =17[1+2+2+2+2+2+2] =13/7
• Cost (tree c) =cost (tree d) =cost (tree e) =15/7

∴ tree b is optimal.
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OPTIMAL BINARY SEARCH 
TREES (Contd..)

• If P(1) =0.5 ,P(2) =0.1, P(3) =0.05 , Q(0) 
=.15 , Q(1) =.1, Q(2) =.05 and Q(3) =.05 
find the OBST.

• Cost (tree a) = .5 x 3 +.1 x 2 +.05 x 3 
+.15x3 +.1x3 +.05x2 +.05x1 = 2.65

• Cost (tree b) =1.9 , Cost (tree c) =1.5 ,Cost 
(tree d) =2.05 ,

• Cost (tree e) =1.6  Hence tree C is optimal.
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OPTIMAL BINARY SEARCH 
TREES (Contd..)

• To obtain a OBST using Dynamic programming 
we need to take a sequence of  decisions regard. 
The construction of tree.

• First decision is which of ai is be as root.
• Let us choose ak as the root . Then the internal 

nodes for a1,…….,ak-1 and the external nodes for 
classes Eo,E1,……,Ek-1 will lie in the left subtree L 
of the root.

• The remaining nodes will be in the right subtree R.
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OPTIMAL BINARY SEARCH 
TREES (Contd..)

Define 
Cost(L) =∑P(i)* level(ai) + ∑Q(i)*(level(Ei )-1)

1≤i≤k                   0≤i≤k
Cost(R) =∑P(i)*level(ai) + ∑Q(i)*(level(Ei )-1)

k≤i≤n                   k≤i≤n
• Tij be the tree with nodes ai+1,…..,aj and nodes 

corresponding to Ei,Ei+1,…..,Ej.

• Let W(i,j) represents the weight of tree Tij.
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OPTIMAL BINARY SEARCH 
TREES (Contd..)

W(i,j)=P(i+1) +…+P(j)+Q(i)+Q(i+1)…Q(j)=Q(i) +∑j [Q(l)+P(l)]
l=i+1

• The expected cost of the search tree in (a) is (let us call it T)  is
P(k)+cost(l)+cost(r)+W(0,k-1)+W(k,n)
W(0,k-1) is the sum of probabilities corresponding to nodes 
and nodes belonging to equivalent classes to the left of ak.
W(k,n) is the sum of the probabilities corresponding to those 
on the right of ak. ak

L R
(a) OBST with root ak


