

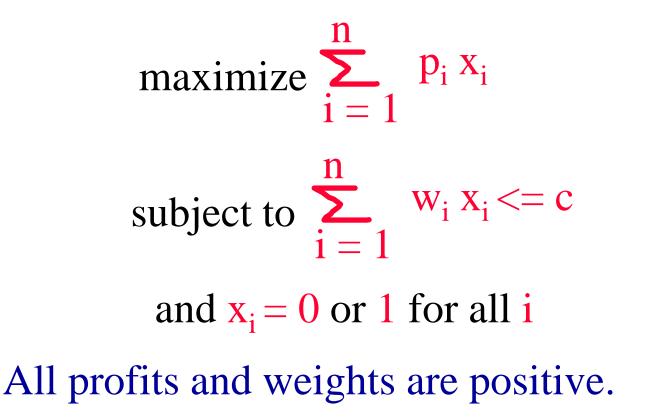
- Problem state.
- Principle of optimality.
- Dynamic Programming Recurrence Equations.
- Solution of recurrence equations.

Sequence Of Decisions

- As in the greedy method, the solution to a problem is viewed as the result of a sequence of decisions.
- Unlike the greedy method, decisions are not made in a greedy and binding manner.

0/1 Knapsack Problem

Let $x_i = 1$ when item i is selected and let $x_i = 0$ when item i is not selected.



Sequence Of Decisions 9

- Decide the x_i values in the order $x_1, x_2, x_3, ..., x_n$.
- Decide the x_i values in the order x_n, x_{n-1}, x_{n-2}, ..., x₁.
- Decide the x_i values in the order $x_1, x_n, x_2, x_{n-1}, \dots$
- Or any other order.

Problem State

- The state of the 0/1 knapsack problem is given by
 - the weights and profits of the available items
 - the capacity of the knapsack
- When a decision on one of the x_i values is made, the problem state changes.
 - item i is no longer available
 - the remaining knapsack capacity may be less

Problem State

- Suppose that decisions are made in the order x₁, x₂, x₃, ..., x_n.
- The initial state of the problem is described by the pair (1, c).
 - Items 1 through n are available (the weights, profits and n are implicit).
 - The available knapsack capacity is **c**.
- Following the first decision the state becomes one of the following:
 - (2, c) ... when the decision is to set $x_1 = 0$.
 - $(2, c-w_1) \dots$ when the decision is to set $x_1 = 1$.

Problem State

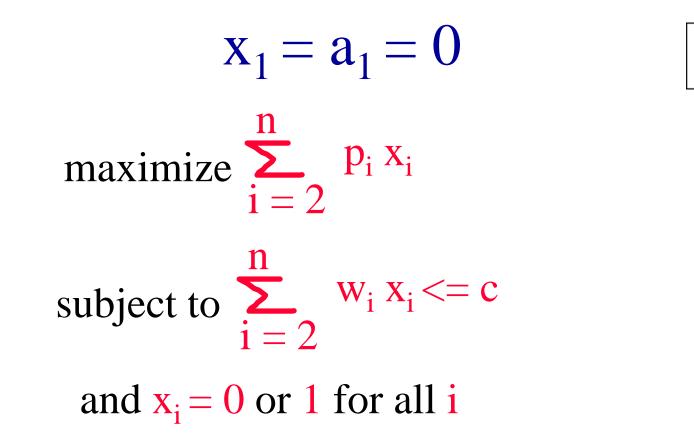
- Suppose that decisions are made in the order x_n , x_{n-1} , x_{n-2} , ..., x_1 .
- The initial state of the problem is described by the pair (n, c).
 - Items 1 through n are available (the weights, profits and first item index are implicit).
 - The available knapsack capacity is **c**.
- Following the first decision the state becomes one of the following:
 - (n-1, c) ... when the decision is to set $x_n = 0$.
 - $(n-1, c-w_n)$... when the decision is to set $x_n = 1$.

Principle Of Optimality

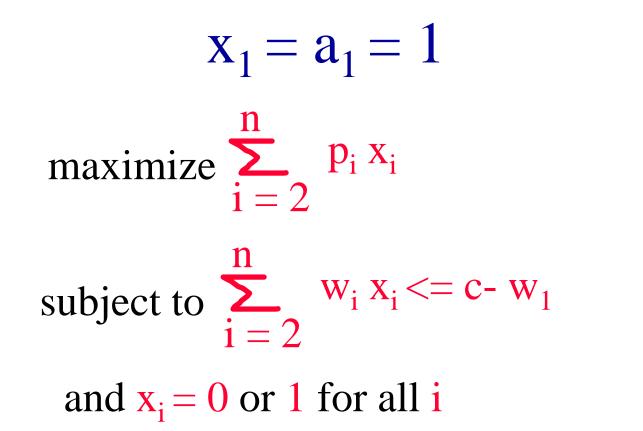
- An optimal solution satisfies the following property:
 - No matter what the first decision, the remaining decisions are optimal with respect to the state that results from this decision.
- Dynamic programming may be used only when the principle of optimality holds.

0/1 Knapsack Problem

- Suppose that decisions are made in the order x₁,
 x₂, x₃, ..., x_n.
- Let $x_1 = a_1$, $x_2 = a_2$, $x_3 = a_3$, ..., $x_n = a_n$ be an optimal solution.
- If $a_1 = 0$, then following the first decision the state is (2, c).
- a₂, a₃, ..., a_n must be an optimal solution to the knapsack instance given by the state (2,c).



• If not, this instance has a better solution b_2 , b_3 , ..., b_n . $\sum_{i=2}^{n} p_i b_i > \sum_{i=2}^{n} p_i a_i$



• If not, this instance has a better solution b_2 , b_3 , ..., b_n . $\sum_{i=2}^{n} p_i b_i > \sum_{i=2}^{n} p_i a_i$

0/1 Knapsack Problem

- Therefore, no matter what the first decision, the remaining decisions are optimal with respect to the state that results from this decision.
- The principle of optimality holds and dynamic programming may be applied.

- Let f(i,y) be the profit value of the optimal solution to the knapsack instance defined by the state (i,y).
 - Items i through n are available.
 - Available capacity is y.
- For the time being assume that we wish to determine only the value of the best solution.
 - Later we will worry about determining the x_is that yield this maximum value.
- Under this assumption, our task is to determine f(1,c).

- **f**(**n**,**y**) is the value of the optimal solution to the knapsack instance defined by the state (**n**,**y**).
 - Only item **n** is available.
 - Available capacity is y.
- If $w_n \le y$, $f(n,y) = p_n$.
- If $w_n > y$, f(n,y) = 0.

- Suppose that i < n.
- **f(i,y)** is the value of the optimal solution to the knapsack instance defined by the state (i,y).
 - Items i through n are available.
 - Available capacity is y.
- Suppose that in the optimal solution for the state (i,y), the first decision is to set $x_i = 0$.
- From the principle of optimality (we have shown that this principle holds for the knapsack problem), it follows that f(i,y) = f(i+1,y).

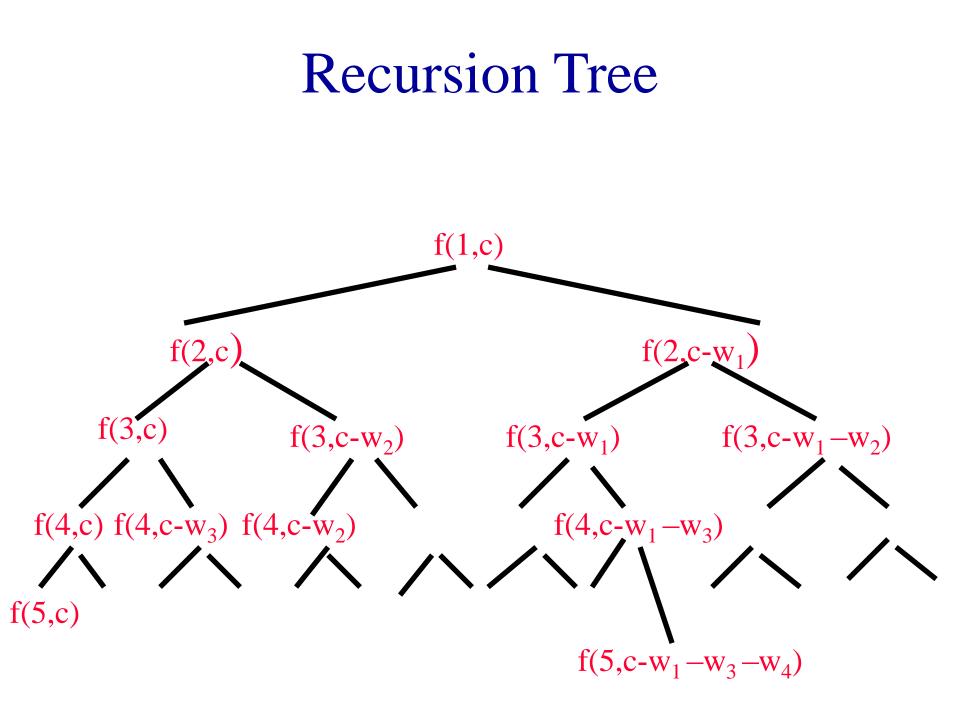
- The only other possibility for the first decision is $x_i = 1$.
- The case $x_i = 1$ can arise only when $y \ge w_i$.
- From the principle of optimality, it follows that $f(i,y) = f(i+1,y-w_i) + p_i$.
- Combining the two cases, we get
 - f(i,y) = f(i+1,y) whenever $y < w_i$.
 - $f(i,y) = \max{f(i+1,y), f(i+1,y-w_i) + p_i}, y \ge w_i$.

Recursive Code

/** @return f(i,y) */
private static int f(int i, int y)

ł

$$\begin{split} & \text{if } (i == n) \text{ return } (y < w[n]) ? 0 : p[n]; \\ & \text{if } (y < w[i]) \text{ return } f(i + 1, y); \\ & \text{return Math.max}(f(i + 1, y), \\ & f(i + 1, y - w[i]) + p[i]); \end{split}$$



Time Complexity

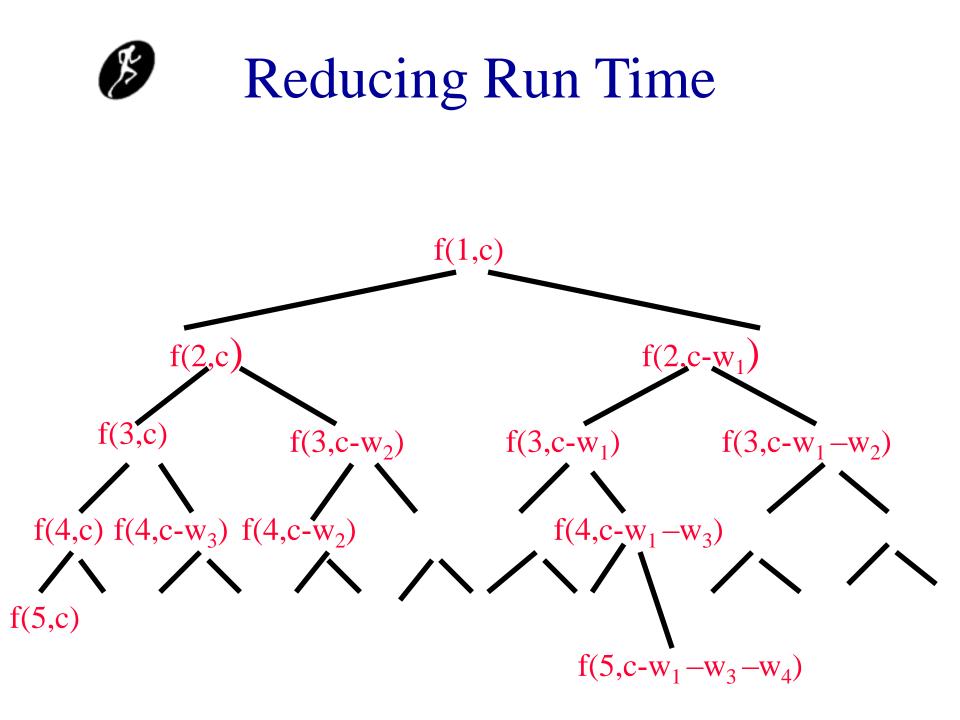
- Let t(n) be the time required when n items are available.
- t(0) = t(1) = a, where a is a constant.
- When t > 1,

 $t(n) \le 2t(n-1) + b$,

where **b** is a constant.

• $t(n) = O(2^n)$.

Solving dynamic programming recurrences recursively can be hazardous to run time.



Integer Weights Dictionary

- Use an array fArray[][] as the dictionary.
- fArray[1:n][0:c]
- fArray[i][y] = -1 iff f(i,y) not yet computed.
- This initialization is done before the recursive method is invoked.
- The initialization takes O(cn) time.

No Recomputation Code

private static int f(int i, int y)

ł

if $(fArray[i][y] \ge 0)$ return fArray[i][y]; if $(i == n) \{fArray[i][y] = (y < w[n]) ? 0 : p[n];$ return fArray[i][y];} if (y < w[i]) fArray[i][y] = f(i + 1, y); else fArray[i][y] = Math.max(f(i + 1, y), f(i + 1, y - w[i]) + p[i]);

return fArray[i][y];

Time Complexity

- t(n) = O(cn).
- Analysis done in text.
- Good when **cn** is small relative to 2ⁿ.
- n = 3, c = 1010101
 - w = [100102, 1000321, 6327]
 - p = [102, 505, 5]
- $2^n = 8$
- cn = 3030303

Contd...

Let $f_j(y)$ be the value of an optimal solution to KNAP(1, j, y). Since the principle of optimality holds, we obtain

$$f_n(m) = \max \{f_{n-1}(m), f_{n-1}(m-w_n) + p_n\}$$
(5.14)

For arbitrary $f_i(y)$, i > 0, Equation 5.14 generalizes to

$$f_i(y) = \max \{f_{i-1}(y), f_{i-1}(y-w_i) + p_i\}$$
(5.15)

Equation 5.15 can be solved for $f_n(m)$ by beginning with the knowledge $f_0(y) = 0$ for all y and $f_i(y) = -\infty, y < 0$. Then f_1, f_2, \ldots, f_n can be successively computed using (5.15).

ordered set $S^i = \{(f(y_j), y_j) | 1 \le j \le k\}$ to represent $f_i(y)$. Each member of S^i is a pair (P, W), where $P = f_i(y_j)$ and $W = y_j$. Notice that $S^0 = \{(0, 0)\}$. We can compute S^{i+1} from S^i by first computing

$$S_1^i = \{ (P, W) | (P - p_i, W - w_i) \in S^i \}$$
(5.16)

$$\sim_1 \quad ((-, \cdots,)) (-, r_i, \cdots, \omega_i) \sim \sim_j \quad (\cdots)$$

Now, S^{i+1} can be computed by merging the pairs in S^i and S_1^i together. Note that if S^{i+1} contains two pairs (P_j, W_j) and (P_k, W_k) with the property that $P_j \leq P_k$ and $W_j \geq W_k$, then the pair (P_j, W_j) can be discarded because of (5.15). Discarding or purging rules such as this one are also known as *dominance rules*. Dominated tuples get purged. In the above, (P_k, W_k) dominates (P_j, W_j) .

Example

Example 5.21 Consider the knapsack instance $n = 3, (w_1, w_2, w_3) = (2, 3, 4), (p_1, p_2, p_3) = (1, 2, 5), and <math>m = 6$. For these data we have

$$\begin{split} S^0 &= \{(0,0)\}; S^0_1 = \{(1,2)\} \\ S^1 &= \{(0,0),(1,2)\}; S^1_1 = \{(2,3),(3,5)\} \\ S^2 &= \{(0,0),(1,2),(2,3),(3,5)\}; S^2_1 = \{(5,4),(6,6),(7,7),(8,9)\} \\ S^3 &= \{(0,0),(1,2),(2,3),(5,4),(6,6),(7,7),(8,9)\} \end{split}$$

If (P1, W1) is the last tuple in S^n , a set of 0/1 values for the x_i 's such that $\sum p_i x_i = P1$ and $\sum w_i x_i = W1$ can be determined by carrying out a search through the S^i s. We can set $x_n = 0$ if $(P1, W1) \in S^{n-1}$. If $(P1, W1) \notin S^{n-1}$, then $(P1 - p_n, W1 - w_n) \in S^{n-1}$ and we can set $x_n = 1$. This leaves us to determine how either (P1, W1) or $(P1 - p_n, W1 - w_n)$ was obtained in S^{n-1} . This can be done recursively.

Example 5.22 With m = 6, the value of $f_3(6)$ is given by the tuple (6, 6) in S^3 (Example 5.21). The tuple $(6, 6) \notin S^2$, and so we must set $x_3 = 1$. The pair (6, 6) came from the pair $(6 - p_3, 6 - w_3) = (1, 2)$. Hence $(1, 2) \in S^2$. Since $(1, 2) \in S^1$, we can set $x_2 = 0$. Since $(1, 2) \notin S^0$, we obtain $x_1 = 1$. Hence an optimal solution is $(x_1, x_2, x_3) = (1, 0, 1)$.

Algorithm $\mathsf{DKP}(p, w, n, m)$ 1 $\mathbf{2}$ { $S^0 := \{(0,0)\};$ 3 for i := 1 to n - 1 do 4 $\mathbf{5}$ Ł $S_1^{i-1} := \{(P, W) | (P - p_i, W - w_i) \in S^{i-1} \text{ and } W \le m\};$ $S^i := \mathsf{MergePurge}(S^{i-1}, S_1^{i-1});$ 6 7 8 (PX, WX) :=last pair in S^{n-1} ; 9 $(PY, WY) := (P' + p_n, W' + w_n)$ where W' is the largest W in any pair in S^{n-1} such that $W + w_n \le m$; 1011 // Trace back for $x_n, x_{n-1}, \ldots, x_1$. 1213if (PX > PY) then $x_n := 0$; 14**else** $x_n := 1;$ TraceBackFor (x_{n-1}, \ldots, x_1) ; 1516 }

Algorithm 5.6 Informal knapsack algorithm

Example

1. Generate the sets S^i , $0 \le i \le 4$ (Equation 5.16), when $(w_1, w_2, w_3, w_4) = (10, 15, 6, 9)$ and $(p_1, p_2, p_3, p_4) = (2, 5, 8, 1)$.