

- Sequence of decisions.
- Problem state.
- Principle of optimality.
- Dynamic Programming Recurrence Equations.
- Solution of recurrence equations.

Sequence Of Decisions

- As in the greedy method, the solution to a problem is viewed as the result of a sequence of decisions.
- Unlike the greedy method, decisions are not made in a greedy and binding manner.

0/1 Knapsack Problem

Let $x_i = 1$ when item i is selected and let $x_i = 0$ when item *i* is not selected.

Sequence Of Decisions

- Decide the x_i values in the order $x_1, x_2, x_3, ..., x_n$.
- Decide the x_i values in the order x_n , x_{n-1} , x_{n-2} , ..., \mathbf{x}_1 .
- Decide the x_i values in the order $x_1, x_n, x_2, x_{n-1}, \ldots$
- Or any other order.

Problem State

- The state of the 0/1 knapsack problem is given by
	- the weights and profits of the available items
	- the capacity of the knapsack
- When a decision on one of the x_i values is made, the problem state changes.
	- item i is no longer available
	- the remaining knapsack capacity may be less

Problem State

- Suppose that decisions are made in the order x_1 , x_2 , x_3 , $..., X_n$
- The initial state of the problem is described by the pair $(1, c).$
	- Items 1 through n are available (the weights, profits and n are implicit).
	- The available knapsack capacity is c.
- Following the first decision the state becomes one of the following:
	- (2, c) ... when the decision is to set $x_1=0$.
	- $(2, c-w_1)$... when the decision is to set $x_1 = 1$.

Problem State

- Suppose that decisions are made in the order x_n , x_{n-1} , x_{n-2} , $..., X_1$
- The initial state of the problem is described by the pair (n, c).
	- Items 1 through n are available (the weights, profits and first item index are implicit).
	- The available knapsack capacity is c.
- Following the first decision the state becomes one of the following:
	- $(n-1, c)$ … when the decision is to set $x_n = 0$.
	- $(n-1, c-w_n)$... when the decision is to set $x_n = 1$.

Principle Of Optimality

- An optimal solution satisfies the following property:
	- No matter what the first decision, the remaining decisions are optimal with respect to the state that results from this decision.
- Dynamic programming may be used only when the principle of optimality holds. \bullet

0/1 Knapsack Problem

- Suppose that decisions are made in the order x_1 , $X_2, X_3, ..., X_n$
- Let $x_1 = a_1$, $x_2 = a_2$, $x_3 = a_3$, ..., $x_n = a_n$ be an optimal solution.
- If $a_1 = 0$, then following the first decision the state is $(2, c)$.
- $a_2, a_3, ..., a_n$ must be an optimal solution to the knapsack instance given by the state (2,c).

• If not, this instance has a better solution b_2 , b_3 , $..., b_n.$ $i = 2$ $\overline{\mathbf{n}}$ $p_i b_i >$ $i = 2$ $\overline{\mathbf{n}}$ p_i a_i

• If not, this instance has a better solution b_2 , b_3 , $..., b_n.$ $i = 2$ $\overline{\mathbf{n}}$ $p_i b_i >$ $i = 2$ $\overline{\mathbf{n}}$ p_i a_i

0/1 Knapsack Problem

- Therefore, no matter what the first decision, the remaining decisions are optimal with respect to the state that results from this decision.
- The principle of optimality holds and dynamic programming may be applied.

- Let $f(i,y)$ be the profit value of the optimal solution to the knapsack instance defined by the state (i, y) .
	- Items i through n are available.
	- Available capacity is y.
- For the time being assume that we wish to determine only the value of the best solution.
	- **Later we will worry about determining the** x_i **s that yield this** maximum value.
- Under this assumption, our task is to determine $f(1,c)$.

- $f(n,y)$ is the value of the optimal solution to the knapsack instance defined by the state (n,y).
	- Only item **n** is available.
	- Available capacity is y.
- If $w_n \le y$, $f(n,y) = p_n$.
- If $w_n > y$, $f(n,y) = 0$.

- Suppose that $i < n$.
- $f(i,y)$ is the value of the optimal solution to the knapsack instance defined by the state (i,y).
	- **Items i through n are available.**
	- Available capacity is y.
- Suppose that in the optimal solution for the state (i, y) , the first decision is to set $x_i = 0$.
- From the principle of optimality (we have shown that this principle holds for the knapsack problem), it follows that $f(i,y) = f(i+1,y)$.

- The only other possibility for the first decision is $x_i=1$.
- The case $x_i = 1$ can arise only when $y \ge w_i$.
- From the principle of optimality, it follows that $f(i,y) = f(i+1,y-w_i) + p_i.$
- Combining the two cases, we get
	- $f(i,y) = f(i+1,y)$ whenever $y < w_i$.
	- $f(i,y) = max{f(i+1,y), f(i+1,y-w_i) + p_i}, y \ge w_i.$

Recursive Code

 $\sqrt{**}$ @return f(i,y) */ private static int f(int i, int y)

 $\{$

}

if (i == n) return (y < w[n]) ? 0 : p[n]; if $(y < w[i])$ return $f(i + 1, y)$; return Math.max $(f(i + 1, y))$, $f(i + 1, y - w[i]) + p[i];$

Time Complexity

- Let $t(n)$ be the time required when n items are available.
- $t(0) = t(1) = a$, where a is a constant.
- When $t > 1$,

 $t(n) \le 2t(n-1) + b$,

where **b** is a constant.

• $t(n) = O(2^n)$.

Solving dynamic programming recurrences recursively can be hazardous to run time.

Integer Weights Dictionary

- Use an array fArray [] as the dictionary.
- fArray $[1:n][0:c]$
- fArray [i] $[y] = -1$ iff $f(i, y)$ not yet computed.
- This initialization is done before the recursive method is invoked.
- The initialization takes O(cn) time.

No Recomputation Code

private static int f(int i, int y)

 $\{$

}

if (fArray[i][y] $>= 0$) return fArray[i][y]; if $(i == n)$ {fArray[i][y] = $(y < w[n])$? 0 : p[n]; return fArray[i][y];} if $(y \le w[i])$ fArray $[i][y] = f(i + 1, y);$ else fArray[i][y] = Math.max(f(i + 1, y), $f(i + 1, y - w[i]) + p[i];$

return fArray[i][y];

Time Complexity

- $t(n) = O(cn)$.
- Analysis done in text.
- Good when cn is small relative to 2^n .
- $n = 3$, $c = 1010101$
	- $w = [100102, 1000321, 6327]$
	- $p = [102, 505, 5]$
- $2^n = 8$
- cn $= 3030303$

$Contd...$

Let $f_i(y)$ be the value of an optimal solution to $KNAP(1, j, y)$. Since the principle of optimality holds, we obtain

$$
f_n(m) = \max \{f_{n-1}(m), f_{n-1}(m - w_n) + p_n\} \tag{5.14}
$$

For arbitrary $f_i(y)$, $i > 0$, Equation 5.14 generalizes to

$$
f_i(y) = \max \{f_{i-1}(y), f_{i-1}(y - w_i) + p_i\} \tag{5.15}
$$

Equation 5.15 can be solved for $f_n(m)$ by beginning with the knowledge $f_0(y)$ $= 0$ for all y and $f_i(y) = -\infty, y < 0$. Then f_1, f_2, \ldots, f_n can be successively computed using (5.15).

ordered set $S^i = \{(f(y_i), y_j) | 1 \leq j \leq k\}$ to represent $f_i(y)$. Each member of S^i is a pair (P, W) , where $P = f_i(y_i)$ and $W = y_i$. Notice that $S^0 = \{(0, 0)\}.$ We can compute S^{i+1} from S^i by first computing

$$
S_1^i = \{ (P, W) | (P - p_i, W - w_i) \in S^i \}
$$
\n^(5.16)

$$
\sim 1 \qquad (1 \qquad 1 \qquad 1 \qquad 1) \qquad \qquad 1 \qquad \qquad
$$

Now, S^{i+1} can be computed by merging the pairs in S^i and S^i_1 together. Note that if S^{i+1} contains two pairs (P_j, W_j) and (P_k, W_k) with the property that $P_j \le P_k$ and $W_j \ge W_k$, then the pair (P_j, W_j) can be discarded because of (5.15) . Discarding or purging rules such as this one are also known as *dominance rules.* Dominated tuples get purged. In the above, (P_k, W_k) dominates (P_j, W_j) .

Example

Example 5.21 Consider the knapsack instance $n = 3$, $(w_1, w_2, w_3) = (2, 3, 4)$, $(p_1, p_2, p_3) = (1, 2, 5)$, and $m = 6$. For these data we have

$$
S0 = \{(0,0)\}; S10 = \{(1,2)\}S1 = \{(0,0), (1,2)\}; S11 = \{(2,3), (3,5)\}S2 = \{(0,0), (1,2), (2,3), (3,5)\}; S12 = \{(5,4), (6,6), (7,7), (8,9)\}S3 = \{(0,0), (1,2), (2,3), (5,4), (6,6), (7,7), (8,9)\}
$$

If $(P1, W1)$ is the last tuple in $Sⁿ$, a set of 0/1 values for the x_i 's such that $\sum p_i x_i = P1$ and $\sum w_i x_i = W1$ can be determined by carrying out a search through the S^{i} s. We can set $x_n = 0$ if $(P_1, W_1) \in \tilde{S}^{n-1}$. If $(P1, W1) \notin S^{n-1}$, then $(P1 - p_n, W1 - w_n) \in S^{n-1}$ and we can set $x_n = 1$. This leaves us to determine how either $(P1, W1)$ or $(P1 - p_n, W1 - w_n)$ was obtained in S^{n-1} . This can be done recursively.

Example 5.22 With $m = 6$, the value of $f_3(6)$ is given by the tuple $(6, 6)$ in S^3 (Example 5.21). The tuple $(6, 6) \notin S^2$, and so we must set $x_3 = 1$. The pair $(6, 6)$ came from the pair $(6 - p_3, 6 - w_3) = (1, 2)$. Hence $(1, 2)$ $\in S^2$. Since $(1,2) \in S^1$, we can set $x_2 = 0$. Since $(1, 2) \notin S^0$, we obtain $x_1 = 1$. Hence an optimal solution is $(x_1, x_2, x_3) = (1, 0, 1)$. \Box

Algorithm DKP (p, w, n, m) $\mathbf{1}$ $\overline{2}$ $\{$ $S^0 := \{(0,0)\};$ $\sqrt{3}$ for $i := 1$ to $n - 1$ do $\overline{4}$ $\overline{5}$ $\{$ $S_1^{i-1} := \{(P,W)| (P - p_i, W - w_i) \in S^{i-1} \text{ and } W \leq m\};$
 $S^i := \text{MergePure}(S^{i-1}, S_1^{i-1});$ $\boldsymbol{6}$ $\overline{7}$ $8\,$ 9 $(PX,WX) :=$ last pair in S^{n-1} ; $(PY, WY) := (P' + p_n, W' + w'_n)$ where W' is the largest W in
any pair in S^{n-1} such that $W + w_n \leq m$; 10 11 // Trace back for $x_n, x_{n-1}, \ldots, x_1$. $12\,$ 13 if $(PX > PY)$ then $x_n := 0$; 14 else $x_n := 1$; TraceBackFor $(x_{n-1}, \ldots, x_1);$ 15 16 }

Algorithm 5.6 Informal knapsack algorithm

Example

1. Generate the sets S^i , $0 \le i \le 4$ (Equation 5.16), when $(w_1, w_2, w_3, w_4) =$ (10, 15, 6, 9) and $(p_1, p_2, p_3, p_4) = (2, 5, 8, 1)$.