. Dynamic Programming
@ @

 Sequence of decisions.
* Problem state.
 Principle of optimality.

* Dynamic Programming Recurrence
Equations.

» Solution of recurrence equations.

Seguence Of Decisions

 As In the greedy method, the solution to a
problem is viewed as the result of a
sequence of decisions.

 Unlike the greedy method, decisions are not
made In a greedy and binding manner.

0/1 Knapsack Problem

Let x; =1 when item i is selected and let x; = 0
when item i is not selected.

N
maximize 2— Pi %

N
subjectto 2— WiX<=¢C
| =

and x;= 0 or 1 for all |

All profits and welights are positive.

Sequence Of Decisions ¢

Decide the x; values in the order x,, X,, X5, ..., X,..
Decide the x; values in the order x., X 4, X, , ...,
X;.

Decide the x; values In the order x;, X, X5, X1, ...
Or any other order.

Problem State

 The state of the 0/1 knapsack problem is given by
= the weights and profits of the available items
= the capacity of the knapsack
» When a decision on one of the x; values Is made,
the problem state changes.
= item 1 Is no longer available
= the remaining knapsack capacity may be less

Problem State

 Suppose that decisions are made In the order X,, X,, X5,
ey X

 The Initial state of the problem is described by the pair
(1, c).
= |[tems 1 through n are available (the weights, profits and n are
implicit).
= The available knapsack capacity is c.

 Following the first decision the state becomes one of the
following:
= (2,c) ... when the decision is to set x,= 0.

= (2. C-W,) ... when the decision 1s to set X, = 1.
1 1

Problem State

 Suppose that decisions are made in the order X, X, 1, X,
ooy X1

 The Initial state of the problem is described by the pair
(n, c).

= [tems 1 through n are available (the weights, profits and first
item index are implicit).

= The available knapsack capacity is c.
 Following the first decision the state becomes one of the
following:
= (n-1, c) ... when the decision is to set x,= 0.
= (n-1, c-w,) ... when the decision is to set x,= 1.

Principle Of Optimality

 An optimal solution satisfies the following
property:

= No matter what the first decision, the remaining
decisions are optimal with respect to the state that
results from this decision.

» Dynamic programming may be used only when
the principle of optimality holds. &

0/1 Knapsack Problem -

Suppose that decisions are made In the order x,,

Xoy Xay «vey X,

Let X,=a,, X, = a,, X3= as, ..., X, = a, be an
optimal solution.

If a, = 0, then following the first decision the state
1S (2, c).

a,, as, ..., a, Must be an optimal solution to the
knapsack Instance given by the state (2,c).

X;=a,=0

N
maximize 2— Pi %

N
subjectto 2— WiXi<=C

and x;=0or 1 foralli

* If not, this instance has a better solution b,, b,
.o DL

N 1
> pb > 2 P&
| =2 =2

X;=q;,=1

N
maximize 2— Pi %

n

subject to

and x;=0or 1 foralli

* If not, this instance has a better solution b,, b,
.o DL

N 1
> pb > 2 P&
| =2 =2

0/1 Knapsack Problem

il

 Therefore, no matter what the first decision, the
remaining decisions are optimal with respect to

the state that results from this decision.

 The principle of optimality holds and dynamic
programming may be applied.

Dynamic Programming Recurrence

Let f(i,y) be the profit value of the optimal solution to
the knapsack instance defined by the state (i,y).

= [tems i through n are available.

= Available capacity is .
For the time being assume that we wish to determine
only the value of the best solution.

= Later we will worry about determining the x;s that yield this
maximum value.

 Under this assumption, our task is to determine f(1,c).

Dynamic Programming Recurrence

* f(n,y) Is the value of the optimal solution to the
knapsack instance defined by the state (n,y).

= Only item n is available.
= Available capacity Isy.
. Ifw, <=y, f(ny) = p,,
e Ifw, >y, f(ny)=0.

Dynamic Programming Recurrence

e Suppose that I <n.

 f(1,y) Is the value of the optimal solution to the
knapsack instance defined by the state (i,y).

= |tems i through n are available.
= Available capacity Is .

 Suppose that in the optimal solution for the state
(1,y), the first decision is to set x;= 0.

* From the principle of optimality (we have
shown that this principle holds for the knapsack
problem), it follows that f(i,y) = f(i+1,y).

Dynamic Programming Recurrence

* The only other possibility for the first decision
IS x;= 1.
 The case x;= 1 can arise only wheny >= w;,.
* From the principle of optimality, it follows that
f(y) = 1(i+1y-w;) + p;.
« Combining the two cases, we get
= f(i,y) = f(i+1,y) whenever y < w.,
= T(1y) = max{f(i+1,y), f(i+1,y-w;) + pi}, y >= w;

Recursive Code

[** @return f(1,y) */

private static int f(int 1, int y)

{
If (1 ==n) return (y <w[n]) ? 0 : p[n];
If (y <wl[i]) return f(i + 1, y);
return Math.max(f(i + 1, y),

f(r+ 1,y -wh]) + plil);

Recursion Tree

f(1,c)

y C)\ } C-K
f(3,c) f(3,c-w,) f(3,c-w,) f(3,c-w, —W,)
/N /N /N RN
f(4,c) f(4,c-w,) f(4,c-W.) f(4,c-w, —w,)
1E(/)\ /N /N /\/\/\ VAN
5,C

f(5,c-w; —-w;-w,)

Time Complexity

 Lett(n) be the time required when n items are
available.

 1(0) =1t(1) = a, where a Is a constant.

e Whent>1,
t(n) <=2t(n-1) + b,
where b Is a constant.

« t(n) =0O(2").

Solving dynamic programming recurrences
recursively can be hazardous to run time.

A

€ Reducing Run Time

f(1,c)

y C)\ } C-K
f(3,c) f(3,c-w,) f(3,c-w,) f(3,c-w, —W,)
/N /N /N RN
f(4,c) f(4,c-w,) f(4,c-W.) f(4,c-w, —w,)
1E(/)\ /N /N /\/\/\ VAN
5,C

f(5,c-w; —-w;-w,)

Integer Weights Dictionary

Use an array fArray[][] as the dictionary.
fArray[1:n][0:c]
fArray[i][y] = -1 iff f(i,y) not yet computed.

This initialization i1s done before the recursive method
IS Invoked.

The Initialization takes O(cn) time.

No Recomputation Code

private static int f(int 1, int y)

{
If (fFArray[i]]y] >= 0) return fArray[i][y];

It (I ==n) {TArray[i][y] = (y <w[n]) ? 0 : p[n];
return fArray[i][y];}

If (y <wl[i]) fArray[i][y] = f(i + 1, y);
else fArray[i]ly] = Math.max(f(i + 1, y),

0+ 1,y -wli]) + p[i]);
return fArray[il|yl.

Time Complexity

 t(n) = O(cn).
 Analysis done In text.
« Good when cn i1s small relative to 2".
e n=3,c=1010101
w =[100102, 1000321, 6327]
p =[102, 505, 5]
e 2N"=8
e cn = 3030303

Contd...

Let, fj(y) be the value of an optimal solution to KNAP(1, j,y). Since the
principle of optimality holds, we obtain

fn(’ﬂ?,) — maX {fn—l(rn)ath"l(m - wn) +pn} (5.14)
For arbitrary f;(y), ¢ > 0, Equation 5.14 generalizes to

fily) = max {f;_1(y), fi-1(y — w3) + pi} (5.15)

Equation 5.15 can be solved for f,(m) by beginning with the knowledge fo(y)
= 0 for all y and f;(y) = —o0,y < 0. Then f1, f2,..., fn can be successively
computed using (5.15).

oi“-dered set St = {(f(yi),y))|l <j<k}to represent f;(y). Each member of
S* is a pair (P, W), where P = f;(y;) and W = y;. Notice that S = {(0,0)}.
We can compute S*™! from S* by first computing

St = {(P,W)|(P ~p;, W —w;) € §'} (5.16)

~ 1 LA~ 7 " S Ity ot ey — o~ =g

Now, S*™! can be computed by merging the pairs in S* and S? together.
Note that if S*™! contains two pairs (P;, W;) and (P, Wy) with the property
that P; < P, and W; > Wy, then the pair (P;, W;) can be discarded because
of (5.15). Discarding or purging rules such as this one are also known as

dominance rules. Dominated tuples get purged. In the above, (P, W})
dominates (P;, Wj).

Example

Example 5.21 Consider the knapsack instance n = 3, (wy, we, w3) = (2,3,4),
(p1,p2,p3) = (1,2,5), and m = 6. For these data we have

S* = {(0,00} S ={(1,2)}

S' = {(0,0),(1,2)}; 5] ={(2,3),(3,5)}

S* = {(0,0),(1,2),(2,3),(3,5)}; 57 = {(5,4),(6,6),(7,7),(8,9)}
S = {(0,0),(1,2),(2,3),(5,4),(6,6),(7,7),(8,9)}

If (P1,W1) is the last tuple in S™, a set of 0/1 values for the x;’s such
that) p;z; = Pl and > w;z; = W1 can be determined by carrying out
a search through the S's. We can set z,, = 0 if (P1,W1) € §" ' If
(P1,W1) g S" 1, then (P1 —p,, W1 —w,) € S ! and we can set z,, = 1.
This leaves us to determine how either (P1, W1) or (Pl —p,, W1 —w,) was
obtained in S™~!. This can be done recursively.

Example 5.22 With m = 6, the value of f3(6) is given by the tuple (6, 6)
in $° (Example 5.21). The tuple (6, 6) € 52, and so we must set x3 = 1.
The pair (6, 6) came from the pair (6 — p3,6 — w3) = (1,2). Hence (1, 2)
€ S?. Since (1,2) € S', we can set z» = 0. Since (1, 2) ¢ S° we obtain
z1 = 1. Hence an optimal solution is (x1,z2,z3) = (1,0,1). O

Algorithm DKP(p,w,n,m)
{

S :={(0,0)};
fori:=1ton—1do

Sihi= {(PW)(P —pi, W —w;) € 51 and W < ms
5% := MergePurge(S~1, 517 1);

Lo~ Ui

(PX,WX) :=last pair in S~ !;
10 (PY,WY) := (P + p,, W + w,) where W' is the largest W in
11 any pair in 571 guch that W + w, < m;

12 // Trace back for z,,zn-1,...,%1.
13 if (PX > PY) then z, :=0;

14 else z, = 1;
15 TraceBackFor(z,—1,...,21);
16 }

Algorithm 5.6 Informal knapsack algorithm

Example

1. Generate thesets S*, 0 < i < 4 (Equation 5.16), when (w1, ws, w3, wys) =
(103 157679) and (p11p27p31p4) - (235183 1)

