
Dynamic Programming

• Sequence of decisions.

• Problem state.

• Principle of optimality.

• Dynamic Programming Recurrence 

Equations.

• Solution of recurrence equations.



Sequence Of Decisions

• As in the greedy method, the solution to a 

problem is viewed as the result of a 

sequence of decisions.

• Unlike the greedy method, decisions are not 

made in a greedy and binding manner.



0/1 Knapsack Problem

Let xi = 1 when item i is selected and let xi = 0 

when item i is not selected.

i = 1

n
pi ximaximize

i = 1

n
wi xi <= csubject to

and xi = 0 or 1 for all i

All profits and weights are positive.



Sequence Of Decisions

• Decide the xi values in the order x1, x2, x3, …, xn.

• Decide the xi values in the order xn, xn-1, xn-2, …, 

x1.

• Decide the xi values in the order x1, xn, x2, xn-1, …

• Or any other order.



Problem State

• The state of the 0/1 knapsack problem is given by 

 the weights and profits of the available items

 the capacity of the knapsack

• When a decision on one of the xi values is made, 

the problem state changes.

 item i is no longer available

 the remaining knapsack capacity may be less



Problem State

• Suppose that decisions are made in the order x1, x2, x3, 

…, xn.

• The initial state of the problem is described by the pair 

(1, c).

 Items 1 through n are available (the weights, profits and n are 

implicit).

 The available knapsack capacity is c.

• Following the first decision the state becomes one of the 

following:

 (2, c) … when the decision is to set x1= 0.

 (2, c-w1) … when the decision is to set x1= 1.



Problem State

• Suppose that decisions are made in the order xn, xn-1, xn-2, 

…, x1.

• The initial state of the problem is described by the pair 

(n, c).

 Items 1 through n are available (the weights, profits and first 

item index are implicit).

 The available knapsack capacity is c.

• Following the first decision the state becomes one of the 

following:

 (n-1, c) … when the decision is to set xn= 0.

 (n-1, c-wn) … when the decision is to set xn= 1.



Principle Of Optimality

• An optimal solution satisfies the following 

property:

 No matter what the first decision, the remaining 

decisions are optimal with respect to the state that 

results from this decision.

• Dynamic programming may be used only when

the principle of optimality holds.



0/1 Knapsack Problem

• Suppose that decisions are made in the order x1, 

x2, x3, …, xn.

• Let x1= a1, x2 = a2, x3 = a3, …, xn = an be an 

optimal solution.

• If a1 = 0, then following the first decision the state 

is (2, c).

• a2, a3, …, an must be an optimal solution to the 

knapsack instance given by the state (2,c).



x1 = a1 = 0

• If not, this instance has a better solution b2, b3, 

…, bn.

i = 2

n
pi ximaximize

i = 2

n
wi xi <= csubject to

and xi = 0 or 1 for all i

i = 2

n
pi bi     >

i = 2

n
pi ai



x1 = a1 = 1

• If not, this instance has a better solution b2, b3, 

…, bn.

i = 2

n
pi ximaximize

i = 2

n
wi xi <= c- w1subject to

and xi = 0 or 1 for all i

i = 2

n
pi bi     >

i = 2

n
pi ai



0/1 Knapsack Problem

• Therefore, no matter what the first decision, the 

remaining decisions are optimal with respect to 

the state that results from this decision.

• The principle of optimality holds and dynamic 

programming may be applied.



Dynamic Programming Recurrence

• Let f(i,y) be the profit value of the optimal solution to 

the knapsack instance defined by the state (i,y).

 Items i through n are available.

 Available capacity is y.

• For the time being assume that we wish to determine 

only the value of the best solution.

 Later we will worry about determining the xis that yield this 

maximum value.

• Under this assumption, our task is to determine f(1,c).



Dynamic Programming Recurrence

• f(n,y) is the value of the optimal solution to the 

knapsack instance defined by the state (n,y).

 Only item n is available.

 Available capacity is y.

• If wn <= y, f(n,y) = pn.

• If wn > y, f(n,y) = 0.



Dynamic Programming Recurrence

• Suppose that i < n. 

• f(i,y) is the value of the optimal solution to the 
knapsack instance defined by the state (i,y).

 Items i through n are available.

 Available capacity is y.

• Suppose that in the optimal solution for the state 
(i,y), the first decision is to set xi= 0. 

• From the principle of optimality (we have 
shown that this principle holds for the knapsack 
problem), it follows that f(i,y) = f(i+1,y).



Dynamic Programming Recurrence

• The only other possibility for the first decision 

is xi= 1.

• The case xi= 1 can arise only when y >= wi.

• From the principle of optimality, it follows that 

f(i,y) = f(i+1,y-wi) + pi.

• Combining the two cases, we get

 f(i,y) = f(i+1,y) whenever y <  wi.

 f(i,y) = max{f(i+1,y), f(i+1,y-wi) + pi}, y >= wi.



Recursive Code

/** @return f(i,y) */

private static int f(int i, int y)

{

if (i == n) return (y < w[n]) ? 0 : p[n];        

if (y < w[i]) return f(i + 1, y);   

return Math.max(f(i + 1, y),

f(i + 1, y - w[i]) + p[i]);

}



Recursion Tree

f(1,c)

f(2,c) f(2,c-w1)

f(3,c) f(3,c-w2) f(3,c-w1) f(3,c-w1 –w2)

f(4,c) f(4,c-w3) f(4,c-w2)

f(5,c)

f(4,c-w1 –w3)

f(5,c-w1 –w3 –w4)



Time Complexity

• Let t(n) be the time required when  n items are 

available.

• t(0) = t(1) = a, where a is a constant.

• When t > 1, 

t(n) <= 2t(n-1) + b,

where b is a constant.

• t(n) = O(2n).

Solving dynamic programming recurrences 

recursively can be hazardous to run time.



Reducing Run Time

f(1,c)

f(2,c) f(2,c-w1)

f(3,c) f(3,c-w2) f(3,c-w1) f(3,c-w1 –w2)

f(4,c) f(4,c-w3) f(4,c-w2)

f(5,c)

f(4,c-w1 –w3)

f(5,c-w1 –w3 –w4)



Integer Weights Dictionary

• Use an array fArray[][] as the dictionary.

• fArray[1:n][0:c]

• fArray[i][y] = -1 iff f(i,y) not yet computed.

• This initialization is done before the recursive method 
is invoked.

• The initialization takes O(cn) time.



No Recomputation Code

private static int f(int i, int y)

{

if (fArray[i][y] >= 0) return fArray[i][y];

if (i == n) {fArray[i][y] = (y < w[n]) ? 0 : p[n]; 

return fArray[i][y];}       

if (y < w[i]) fArray[i][y] = f(i + 1, y);   

else fArray[i][y] = Math.max(f(i + 1, y),

f(i + 1, y - w[i]) + p[i]);

return fArray[i][y];

}



Time Complexity

• t(n) = O(cn).

• Analysis done in text.

• Good when cn is small relative to 2n.

• n = 3, c = 1010101

w = [100102, 1000321, 6327]

p = [102, 505, 5]

• 2n = 8

• cn = 3030303
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