
1

Parallel algorithm for 0/1

knapsack problem

2

INDEX

1. Introduction

2. Knapsack problem

3. Hypercube

4. Dynamic Programming solution for 0/1 Knapsack

problem

5. Parallel algorithm for 0/1 Knap sack problem

6. Analyse Time and Speed

7. Conclusions

3

I. Introduction

 O-1 Knapsack problem has many real

world applications and is one of the

popular combinatorial optimization

problems. There are many algorithms

available for this problem but traditionally

the Dynamic programming solution is

used to solve this problem.

4

 This paper discusses the parallel

implementation of a Dynamic

Programming solution on an n-cube

hypercube.

 After the initial explanation of the

implementation of the algorithm, authors

proceed to theoretically derive the run

time for the same.

5

II a. Knapsack problem

 KNAP(G, c)

 Given a set G of m objects each having

a weight of wi, profit pi, and a knapsack

with a maximum capacity of c

6

7

IIb. Hypercube

 A Hypercube or a binary n-cube contains

N = 2^n nodes arranged along the n

dimensions of the hypercube

 The labeling is done such that all the

neighboring nodes have their labels

differing in one bit position only

8

 Nodes that are reachable by traveling

two edges differ in two bit positions

 The total number of bit positions at which

two labels differ is called the ‘hamming

distance’ and represents the distance

between the nodes in terms of the

number of edges between the nodes

9

 In an n-cube hypercube, each node has

n neighbors and the length of the

shortest path between any two nodes is

at most n.

 An n-cube hypercube can be constructed

by combining two n-1 cubes and

connecting the corresponding nodes

10

 Hypercubes are implemented in

computers such as iPSC, ncube and

CM-2

11

12

13

14

III. Dynamic Programming solution for 0/1 Knapsack problem

 i. Optimal substructure of the problem

 ii. Notations

 iii. Algorithms

15

i. Optimal substructure of the problem

 Let W be the weight of the objects

selected in the optimal solution and

object j with weight wj and profit pj be

part of the optimal solution

 If ‘j’ were to be removed from the

optimal set, then the optimal set without

object ‘j’ would be the solution of the

KNAP(G-j, c-wj).

16

 Hence the knapsack problem has the

optimal substructure and dynamic

programming can be applied to solve this

problem.

17

ii. Notations

 fk(x) is defined as the optimal value of

the profit of the solution of the knapsack

problem with capacity of x and with first

‘k’ items of the input set.

 fm(c) indicates the value of the optimal

solution.

18

 According to the optimal sub structure of

DP solution, we have,

f0(x) = (0 – if x ≥ 0;

= (-∞ - if x < 0;

fi(x) = max{fi-1(x), fi-1(x-wi) + pi },for all x

where i = 1,2,3 ….., m

19

 The DP solution of this problem given
below is based on these equations.

 This solution uses a data structure Si,
which is a list of tuples representing the
step points of fi(x).

 The solution generates ‘m’ such lists and
each list represents the solution to the
‘j’th sub problem fj(x) where x = 1, 2, 3,
……c.

20

 The algorithm generates the solution

vector ’z’ by tracing back the history by

analyzing the lists

 An example of list Sj, is given below

21

22

iii. Algorithms

23

24

 During the merge process, if (S’i U Si-1)

contains two tuples (Pj, Wj) and (Pk, Wk)

such that Pj ≤ Pk and Wj ≥ Wk, then (Pj,

Wj) is discarded.

25

 The backtracking algorithm
demonstrates the construction of the
solution vector Z from the lists generated
for all objects by the ‘forward part’ of the
algorithm.

 Here for every object, it is verified to see
if that object was added to the optimal
set by verified the list obtained from
previous iteration i.e. Si-1

26

IV. Parallel algorithm for 0/1 Knap sack problem

 The parallel algorithm for knapsack

problem is based on the operations

‘combine’ and ‘history’

27

28

29

 Whereas ‘combine’ operation is used to

combine the solutions of two sub

problems, the history operation helps in

combining the history, which is required

for constructing the solution vector z

30

 In other words, if b and d are two optimal

profit vectors for KNAP(B, c) and

KNAP(D, c) such that B ∩ D = Φ then e,

which holds the result of the combine

operation above is the optimal profit

vector for KNAP(B U D, c).

 The proof for this is given below:

31

32

33

34

35

36

The common approach in parallel programming is to

 A.Divide the original problem into sub

problems of smaller size.

It is critical in this stage to identify the parts of

the problem that can be executed in parallel.

 B.Solve the smaller sub problems in parallel

At this stage the main objective is to lower the

communication between the processors

working on their respective sub problems.

37

 C.Combine the solutions to the sub

problems to obtain the solution to the

original problem

38

 If the combined overhead associated

with any of the above 3 stages is more

than the efficiency gained from the

parallel processing, then it is not

beneficial to perform parallel processing.

39

 However, from the above lemma we

know that there is way to combine the

solutions of any two sub problems.

 This also enables us to divide main

problem into many sub problems, which

can be executed parallel with each other

and can be combined later using the

combine operations.

40

 The algorithms that are based on the

‘combine’ and ‘history’ operations are

given below:

41

42

43

 In step 1, the algorithm will divide the original
input set into p different sets such that no
object is common between these subsets.

 Each of these subsets is assigned to a
processor, which will perform the forward part
of the single processor dynamic programming
algorithm (algorithm 1).

 Even though the input size of the sub problem
is reduced, all the processors will try to find
solution for the same size of knapsack as that
of the original problem (i.e.) c.

44

45

Notations used in the above algorithms

 l – the level from which the group size

does not increase.

 a(i, k) is the profit vector for group i at

level k

 h(i, k) is the history vector for group i at

level k

46

 At each level of combining procedure,

the number of groups of processors is

reduced to half.

 Combining procedure is applied till the

final solution is obtained by combining

the solutions of all the sub problems.

47

 Initially at level 1, there are p processors.

 The combine processes is applied to the
output of these processors and for the
next level we have p/2 groups of
processors, each group containing 2
processors.

 This process is continued and for the
next level there are p/4 groups of
processors each with 4 processors.

48

 This process is in the form of a tree and

is shown below:

49

50

Implementation of algorithm on hypercube

51

52

 In step (ii), each node exchanges its profit

vector with its opposite node in the kth

direction.

 In step (iii) each node in the group calculates

its part of the profit vector.

 In step (iv), every node broadcasts the results

of its computation to all the other nodes in the

group. At the end of this step, all the nodes of

the group have the same whole profit vector.

53

Analyse Time and Speed

 A. TDP(p,m,c) = Total processing time for

the dynamic programming algorithm with p

processors and (m,c) is the knapsack

problem size and is equal to,

54

 B. TCB(p, m, c) = Processing time for the

combining procedure and is equal to,

55

 C. TDT(n, c) = Total data transmission time

for a hypercube of nth order and c is the

size of the knapsack and is equal to,

Where, β is the communication setup time and γ is the unit data transfer time.

56

 D. THN(n, m) = Total data transmission

time from host to all nodes and is equal to

where, β’ is the communication setup time between host and node and

γ’ is the unit data transfer between host and node.

57

V. Conclusions

 Series I: For this experiment a

knapsack problem with 300 objects and

size of 30 is used and 20 instances of

the problem are used. The solution was

implemented on a hyper cube with

number of active nodes p = 1, 2, 4, 8, 16,

32, 64.

58

 Series II: For this experiment, a

knapsack problem with 1000 objects and

size of 100 is used and 6 instances of

the problem are tested.

59

 Series III: This test was conducted for

two-dimensional knapsack problem. It

tested 12 instances of a problem with

500 objects and two constraints equal to

10 and 5 respectively.

60

61

62

63

64

References

 A Hypercube Algorithm for the 0/1 Knapsack Problem, by Jong

Lee, Eugene Shragowitz, Sartaj Sahni, University of Minnesota.

 Text Book on ‘ Fundamentals of Parallel Processing’ by Harry F.

Jordan and Gita Alaghband.

