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I. Introduction

 O-1 Knapsack problem has many real 

world applications and is one of the 

popular combinatorial optimization 

problems. There are many algorithms 

available for this problem but traditionally 

the Dynamic programming solution is 

used to solve this problem. 
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 This paper discusses the parallel 

implementation of a Dynamic 

Programming solution on an n-cube 

hypercube. 

 After the initial explanation of the 

implementation of the algorithm, authors 

proceed to theoretically derive the run 

time for the same. 
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II a. Knapsack problem

 KNAP(G, c)

 Given a set G of m objects each having 

a weight of wi, profit pi, and a knapsack 

with a maximum capacity of c 
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IIb. Hypercube

 A Hypercube or a binary n-cube contains 

N = 2^n nodes arranged along the n 

dimensions of the hypercube 

 The labeling is done such that all the 

neighboring nodes have their labels 

differing in one bit position only 
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 Nodes that are reachable by traveling 

two edges differ in two bit positions 

 The total number of bit positions at which 

two labels differ is called the ‘hamming 

distance’ and represents the distance 

between the nodes in terms of the 

number of edges between the nodes 
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 In an n-cube hypercube, each node has 

n neighbors and the length of the 

shortest path between any two nodes is 

at most n. 

 An n-cube hypercube can be constructed 

by combining two n-1 cubes and 

connecting the corresponding nodes
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 Hypercubes are implemented in 

computers such as iPSC, ncube and 

CM-2
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III. Dynamic Programming solution for 0/1 Knapsack problem

 i. Optimal substructure of the problem

 ii. Notations

 iii. Algorithms
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i. Optimal substructure of the problem

 Let W be the weight of the objects 

selected in the optimal solution and 

object j with weight wj and profit pj be 

part of the optimal solution

 If ‘j’ were to be removed from the 

optimal set, then the optimal set without 

object ‘j’ would be the solution of the 

KNAP(G-j, c-wj). 
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 Hence the knapsack problem has the 

optimal substructure and dynamic 

programming can be applied to solve this 

problem.
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ii. Notations

 fk(x) is defined as the optimal value of 

the profit of the solution of the knapsack 

problem with capacity of x and with first 

‘k’ items of the input set. 

 fm(c) indicates the value of the optimal 

solution. 
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 According to the optimal sub structure of 

DP solution, we have,

f0(x) = (0 – if x ≥ 0; 

= (-∞ - if x < 0;

fi(x) = max{fi-1(x), fi-1(x-wi) + pi },for all x  

where i = 1,2,3 ….., m
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 The DP solution of this problem given 
below is based on these equations.

 This solution uses a data structure Si, 
which is a list of tuples representing the 
step points of fi(x). 

 The solution generates ‘m’ such lists and 
each list represents the solution to the 
‘j’th sub problem fj(x) where x = 1, 2, 3, 
……c. 
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 The algorithm generates the solution 

vector ’z’ by tracing back the history by 

analyzing the lists 

 An example of list Sj, is given below
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iii. Algorithms
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 During the merge process, if (S’i U Si-1) 

contains two tuples (Pj, Wj) and (Pk, Wk) 

such that Pj ≤ Pk and Wj ≥ Wk, then (Pj, 

Wj) is discarded.
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 The backtracking algorithm 
demonstrates the construction of the 
solution vector Z from the lists generated 
for all objects by the ‘forward part’ of the 
algorithm.

 Here for every object, it is verified to see 
if that object was added to the optimal 
set by verified the list obtained from 
previous iteration i.e. Si-1
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IV. Parallel algorithm for 0/1 Knap sack problem

 The parallel algorithm for knapsack 

problem is based on the operations 

‘combine’ and ‘history’ 
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 Whereas ‘combine’ operation is used to 

combine the solutions of two sub 

problems, the history operation helps in 

combining the history, which is required 

for constructing the solution vector z
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 In other words, if b and d are two optimal 

profit vectors for KNAP(B, c) and 

KNAP(D, c) such that B ∩ D = Φ then e, 

which holds the result of the combine 

operation above is the optimal profit 

vector for KNAP(B  U D, c).

 The proof for this is given below:
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The common approach in parallel programming is to 

 A.Divide the original problem into sub 

problems of smaller size. 

It is critical in this stage to identify the parts of 

the problem that can be executed in parallel.

 B.Solve the smaller sub problems in parallel

At this stage the main objective is to lower the 

communication between the processors 

working on their respective sub problems.
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 C.Combine the solutions to the sub 

problems to obtain the solution to the 

original problem
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 If the combined overhead associated 

with any of the above 3 stages is more 

than the efficiency gained from the 

parallel processing, then it is not 

beneficial to perform parallel processing.



39

 However, from the above lemma we 

know that there is way to combine the 

solutions of any two sub problems.

 This also enables us to divide main 

problem into many sub problems, which 

can be executed parallel with each other 

and can be combined later using the 

combine operations. 



40

 The algorithms that are based on the 

‘combine’ and ‘history’ operations are 

given below:



41



42



43

 In step 1, the algorithm will divide the original 
input set into p different sets such that no 
object is common between these subsets. 

 Each of these subsets is assigned to a 
processor, which will perform the forward part 
of the single processor dynamic programming 
algorithm (algorithm 1).

 Even though the input size of the sub problem 
is reduced, all the processors will try to find 
solution for the same size of knapsack as that 
of the original problem (i.e.) c.
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Notations used in the above algorithms

 l – the level from which the group size 

does not increase.

 a(i, k) is the profit vector for group i at 

level k

 h(i, k) is the history vector for group i at 

level k
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 At each level of combining procedure, 

the number of groups of processors is 

reduced to half.

 Combining procedure is applied till the 

final solution is obtained by combining 

the solutions of all the sub problems.
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 Initially at level 1, there are p processors. 

 The combine processes is applied to the 
output of these processors and for the 
next level we have p/2 groups of 
processors, each group containing 2 
processors.

 This process is continued and for the 
next level there are p/4 groups of 
processors each with 4 processors.
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 This process is in the form of a tree and 

is shown below:
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Implementation of algorithm on hypercube
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 In step (ii), each node exchanges its profit 

vector with its opposite node in the kth 

direction. 

 In step (iii) each node in the group calculates 

its part of the profit vector.

 In step (iv), every node broadcasts the results 

of its computation to all the other nodes in the 

group. At the end of this step, all the nodes of 

the group have the same whole profit vector.
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Analyse Time and Speed

 A. TDP(p,m,c) = Total processing time for 

the dynamic programming algorithm with p 

processors and (m,c) is the knapsack 

problem size and is equal to, 
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 B. TCB(p, m, c) = Processing time for the 

combining procedure and is equal to, 
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 C. TDT(n, c) = Total data transmission time 

for a hypercube of nth order and c is the 

size of the knapsack and is equal to, 

Where, β is the communication setup time and γ is the unit data transfer time.
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 D. THN(n, m) = Total data transmission 

time from host to all nodes and is equal to

where, β’ is the communication setup time between host and node and

γ’ is the unit data transfer between host and node.
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V. Conclusions

 Series I: For this experiment a 

knapsack problem with 300 objects and 

size of 30 is used and 20 instances of 

the problem are used. The solution was 

implemented on a hyper cube with 

number of active nodes p = 1, 2, 4, 8, 16, 

32, 64. 
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 Series II: For this experiment, a 

knapsack problem with 1000 objects and 

size of 100 is used and 6 instances of 

the problem are tested. 
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 Series III: This test was conducted for 

two-dimensional knapsack problem. It 

tested 12 instances of a problem with 

500 objects and two constraints equal to 

10 and 5 respectively. 
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