Parallel algorithm for 0/1
knapsack problem

Introduction

Knapsack problem

Hypercube

Dynamic Programming solution for 0/1 Knapsack

problem
Parallel algorithm for 0/1 Knap sack problem
Analyse Time and Speed

Conclusions

Introduction

e O-1 Knapsack problem has many real
world applications and is one of the
popular combinatorial optimization
problems. There are many algorithms
available for this problem but traditionally
the Dynamic programming solution Is
used to solve this problem.

e This paper discusses the parallel
Implementation of a Dynamic
Programming solution on an n-cube

hypercube.

e After the initial explanation of the
Implementation of the algorithm, authors
proceed to theoretically derive the run
time for the same.

Il a. Knapsack problem

e KNAP(G, ¢)

e Given a set G of m objects each having
a weight of wi, profit pi, and a knapsack
with a maximum capacity of ¢

1 =1

Y. pizi is maximized
rH

subiect to

where z, = (1 -if ebject 1 is included

(0 - othetrwise

lIb. Hypercube

e A Hypercube or a binary n-cube contains
N = 2*n nodes arranged along the n
dimensions of the hypercube

e The labeling Is done such that all the
neighboring nodes have their labels
differing in one bit position only

e Nodes that are reachable by traveling

two edges differ in two
e The total number of bit

DIt positions

nositions at which

two labels differ is called the ‘hamming
distance’ and represents the distance
between the nodes in terms of the
number of edges between the nodes

e In an n-cube hypercube, each node has
n neighbors and the length of the
shortest path between any two nodes Is

at most n.

e An n-cube hypercube can be constructed
by combining two n-1 cubes and
connecting the corresponding nodes

e Hypercubes are implemented In
computers such as IPSC, ncube and
CM-2

10

E o 112 hvpercube { 2 nodes)

(o E

E.o 212 Irvwpercube [4 nmodes)

0o ¢ 0 @Dl

10 @ @11

11

E.g 210 hypercube { 8 nodes)

100 101
A 5
000 ao1
0 1
o Ny
™, 110 2+~ 111

9 ¢ 3 1

alio0

12

A1} Hypercube or Binary 4— Cube

13

lIl. Dynamic Programming solution for 0/1 Knapsack problem

e |. Optimal substructure of the problem

e |[I. Notations

e 1ll. Algorithms

14

timal substructure of the

e Let W be the weight of the objects
selected in the optimal solution and
object | with weight wj and profit pj be

part of the optimal solution

e If j were to be removed from the
optimal set, then the optimal set without
object |’ would be the solution of the
KNAP(G-J, c-wj).

15

e Hence the knapsack problem has the
optimal substructure and dynamic
programming can be applied to solve this

problem.

16

1. Notations

e fk(x) Is defined as the optimal value of
the profit of the solution of the knapsack
problem with capacity of x and with first
'k’ items of the input set.

e fm(c) indicates the value of the optimal
solution.

17

e According to the optimal sub structure of
DP solution, we have,

fO(x) = (0 — if x = 0;

= (-~ -1fx<0;

fi(x) = max{fi-1(x), fi-1(x-wi) + pi },for all x
wherei=1,23,m

18

e The DP solution of this problem given
below Is based on these equations.

e This solution uses a data structure Si,

which Is a list of tuples representing the
step points of fi(x).

e The solution generates ‘'m’ such lists and
each list represents the solution to the
J'th sub problem fj(x) where x =1, 2, 3,
...... C.

19

e The algorithm generates the solution
vector 'z’ by tracing back the history by
analyzing the lists

e An example of list 5}, Is given below

20

1. Algorithms

Algorithm 1 [forward part of dynamic programming|
Soe=/(0, 0)/
for i<1 to m do
begin
S {(PAp Ww) [(PW)e S, W +w<e)
S; —merge (S, SI-F}

end

22

Algorithm 2 [backtracking part of dynamic programming |
(M, last tuple in 5,
for i«<—m downto 1 do

begin

(P —p, W—w;)= 5, | then
zp—11 PP —p;; W= —ny

23

e During the merge process, if (S'i U Si-1)
contains two tuples (Pj, Wj) and (Pk, Wk)
such that Pj < Pk and Wj =2 WK, then (P,

W)) Is discarded.

24

e The backtracking algorithm
demonstrates the construction of the
solution vector Z from the lists generated
for all objects by the ‘forward part’ of the

algorithm.

e Here for every object, it is verified to see
If that object was added to the optimal
set by verified the list obtained from
previous iteration i.e. Si-1

25

V. Parallel algorithm for 0/1 Knap sack

e The parallel algorithm for knapsack
problem Is based on the operations
‘combine’ and ‘history’

26

¢ —combine (h.d),

fori=0.1,....c

where e;=max b, +d;_;/
(=<

4

27

h=history (b.d).

where fi; =jg such that

. .. Iy . .ot) —
bju+fff_jn m?i*bf+d*‘f’ Jfori=0.1.....c

28

e \Whereas ‘combine’ operation is used to
combine the solutions of two sub
problems, the history operation helps in

combining the history, which is required
for constructing the solution vector z

29

e In other words, If b and d are two optimal

profit vectors for KNAP(B, ¢) and
KNAP(D, c) such that B N D = ® then e,

which holds the result of the combine
operation above Is the optimal profit
vector for KNAP(B U D, c).

e The proof for this is given below:

30

Let 2 be an optimal solution vector for KNAP(BUDx) for some x, where OSvse, Let o be
a value of the optimal solution and) be the sum of weights of all selected objects. For-

mally, this can be stated as follows:

Y pact, ¥ owepsx
icBD icBuD

31

Each of these expressions can be broken into two expressions as follows:

Y piziog, ¥ wiz Pp.
ich iz H

and

E]F:';:,l . En;:;' IJ.'lD
icD ic D

32

Since by, 15 a value of the optimal solution for KNAP (B, [3g), then ttpshp,. The same is

true for KNAP (D, 3p), thus apshy,.

33

Thus,

cx2ep - max(hytdp)2 bpy tdpp,

hl_[j_ 'WI‘IIJ.D Z0gtdp — O

34

But 15 Vol of he feasbk sluion for VAP (D), . 2ey, thsfrom e, 26, i
ollws hat 1.0 ¢ 1 vale ofthe optmal soution for KNAP (B, where

0e, nd s nopimal rofit et for KVAP (Bl)0

The common approach in parallel programming is to

e A.Divide the original problem into sub
problems of smaller size.

It is critical in this stage to identify the parts of

the problem that can be executed in parallel.
e B.Solve the smaller sub problems in paralle

At this stage the main objective is to lower t
communication between the processors
working on their respective sub problems.

36

e C.Combine the solutions to the sub
problems to obtain the solution to the
original problem

37

e |f the combined overhead associated
with any of the above 3 stages is more
than the efficiency gained from the

parallel processing, then it is not
beneficial to perform parallel processing.

38

e However, from the above lemma we
know that there Iis way to combine the
solutions of any two sub problems.

e This also enables us to divide main
problem into many sub problems, which
can be executed parallel with each other
and can be combined later using the
combine operations.

39

e The algorithms that are based on the
‘combine’ and ‘history’ operations are
given below:

40

Algorithm 3 [parallel algorithm|

(2)

(3)

[partition]: Partition KNAP(G.c) into p subproblems KNAP(Gy.c), 1-0,1,..p=I
p-l - .

such that GGy, G- afizfand |Gy = G p forall 7.
i=0

Assign KNAP (G.e) to PRy, for i =0,1,..p~1.

[forward part of dynamic programming|: Each processor solves ANAP((y.c) apply-
ing Algorithm | and gets a profit vector a'.

[forward part of the combining procedure]: the p processors combine their profit vee-
tors a', for -0,1,..p=1, to get the resulting profit vector ¥-(rg,ry.....r.) for
KNAP(Goe).

* see Algonithm 4 *

41

(4) [backtracking part of the combining procedure]: the p processors trace back the com-

bining history to get x;, fori -0, 1...p=1 such that

p- p-
T, Sd e,
=0

=0

*sec Algorithm § #
(3) [backtracking part of dynamic programming]: Each processor traces back s
dynamic programming history applying Algorithm 2 with (2,1)~(ay. %) to get an

optimal solution vector.

42

e In step 1, the algorithm will divide the original
Input set into p different sets such that no
object is common between these subsets.

e Each of these subsets is assigned to a
processor, which will perform the forward part

of the single processor dynamic programming
algorithm (algorithm 1).

e Even though the input size of the sub problem
IS reduced, all the processors will try to find
solution for the same size of knapsack as that
of the original problem (i.e.) c.

43

Aldlcorithm 4 [forward part of the combining procedure|
Foe— logae — 1
al "M @' fori=0.1....0—1

Tfor & «— |1 to s do

besin

g-:—mjﬂ{k..fj:r-:——l%l

Partition the set of @ processors into » groups of size 28 ¢
for cach group ¢ (0=i=r —1) in parallel do
becoin

A processors in the group § compute

44

Notations used in the above algorithms

e | — the level from which the group size
does not Increase.

e a(l, k) Is the profit vector for group | at

level k

e (i, k) Is the history vector for group I at
level k

45

e At each level of combining procedure,
the number of groups of processors Is
reduced to half.

e Combining procedure is applied till the
final solution Is obtained by combining
the solutions of all the sub problems.

46

e Initially at level 1, there are p processors.

e The combine processes is applied to the
output of these processors and for the

next level we have p/2 groups of
processors, each group containing 2
Processors.

e This process is continued and for the
next level there are p/4 groups of
processors each with 4 processors.

47

e This process is in the form of a tree and
IS shown below:

48

PRO-3

combine

i !
PRO-3 PRA-T

comline

— -
-

PRZ2-3 PR&-T

Lewvel 1
combine combine

— = flow of profit vector — — — == flow of weight

49

Implementation of algorithm on hypercube

Algorithm 6
[&= logsc =1
* n1s a dimension of the hypercube *
for b1 to n do
hegin
|| Group]
g —=min(kf):
GRy—{NODE |(4uiu-1 " qg+1 271/,
where i=0,1,....2" 3-1;
2 | Exchange|
Each node exchanges its profit vector with the opposite node in the £th direc-

Lon.

50

3|Compute|

livery node i the group computes its part of the resulting profit vector and

saves the combiming history.

4 | Gather|

Every node broadeasts its elements of the combined profit vector to every other

node i the group, so that every node in the group has the same new profit vec-

tor

51

e In step (ii), each node exchanges its profit
vector with its opposite node in the kth
direction.

e In step (iii) each node in the group calculates
its part of the profit vector.

e In step (iv), every node broadcasts the results
of its computation to all the other nodes in the
group. At the end of this step, all the nodes of
the group have the same whole profit vector.

52

Analyse Time and Speed

e A. TDP(p,m,c) = Total processing time for
the dynamic programming algorithm with p
processors and (m,c) is the knapsack
problem size and is equal to,

fppllom,c)
Cr V-
1

53

e B. TCB(p, m, c) = Processing time for the
combining procedure and is equal to,

Vet +en)

54

e C. TDT(n, c) = Total data transmission time
for a hypercube of nth order and c is the
size of the knapsack and is equal to,

O(n*p+cny)

Where, 3 is the communication setup time and vy is the unit data transfer time.

55

e D. THN(n, m) = Total data transmission
time from host to all nodes and is equal to

0(2"p"+my).

where, B’ is the communication setup time between host and node and
Y’ is the unit data transfer between host and node.

56

V. Conclusions

e Series I. For this experiment a
knapsack problem with 300 objects and
size of 30 Is used and 20 instances of
the problem are used. The solution was
Implemented on a hyper cube with
number of active nodes p =1, 2, 4, 8, 16,
32, 64.

57

e Series ll: For this experiment, a
knapsack problem with 1000 objects and
size of 100 Is used and 6 instances of

the problem are tested.

58

e Series lll: This test was conducted for
two-dimensional knapsack problem. It
tested 12 instances of a problem with

500 objects and two constraints equal to
10 and 5 respectively.

59

processors

es I Speed up

Efficiency

Speedup

Efficiency

Speedup

Efficiency

60

= Y =
—

—_

PR = -
=

=

J‘._._JL._‘@‘._“._._‘-.._J

T 1)) = e

fhe nember of procesyars

total time
dwnam. prog. timse
combining titme

Components of elapsed timee for series-1

61

e R 1a
e i ber ol processors
total time

v nam. prog. tiimses
coimibining time

Comiponenits of elapsed tine for series-2

62

21
fhe e bher of procesyoars
total timme

dvrnmarm. prog. timee
combining titme

Components of elapsed time for series-3

63

References

e A Hypercube Algorithm for the 0/1 Knapsack Problem, by Jong
Lee, Eugene Shragowitz, Sartaj Sahni, University of Minnesota.

e Text Book on * Fundamentals of Parallel Processing’ by Harry F.
Jordan and Gita Alaghband.

64

