Algorithms

Introduction

Outlines

 Algorithm Analysis
e Counting the number of operations

e How to count
 Worst case
 Average case
e Best case

e Asymptotic notations
e Upper bounds
e Lower bounds
e Tight bounds

Balasubramanian V Introduction to Design & Analysis of Algorithm

Outlines

e Algorithm Design

o Standard methods (for easy problems)
e Greedy algorithms
* Divide-and-conguer
e Dynamic programming
e Search

e Advanced methods (for hard problems)
» Probabilistic/randomized algorithms
o Approximation algorithms

Balasubramanian V Introduction to Design & Analysis of Algorithm

Typical Problems

e Sorting
e Given a set of values, sort the values.
e Optimization
e Given a set of Z such that ..., find X from Z such
that f(X) Is optimal (min or max).
* Given a graph G, find a path P from A to B in G such
that length of P Is smallest.

e Calculating

e Given input X, calculate f(X).
» Given vertices of a polygon X, calculate the area of X.

e Others

Balasubramanian V Introduction to Design & Analysis of Algorithm

Algorithm Analysis

Measure the resource *\When to measure
required in an algorithm Best case
eTime *Bad!
*Running time \Worst case
*Disk access *Upper bound
*Mostly used, in general
*Space «Often occur
*Memory *Average case

«Often close to worst case

*Used for randomized
algorithm

Balasubramanian V Introduction to Design & Analysis of Algorithm

Measure Running Time

e Basically, counting the number of basic
operations required to solve a problem,
depending on the problem/instance size

 \WWhat Is a basic operations?

e How to measure Instance size

Balasubramanian V Introduction to Design & Analysis of Algorithm

Basic Operations

 What can be done In a constant time,
regardless of the size of the input

» Basic arithmetic operations, e.g. add, subtract,
shift, ...

e Relational operations, e.g. <, >, <=, ...
 Logical operations, e.g. and, or, not

 More complex arithmetic operations, e.g.
multiply, divide, log, ...

e Etc.

e But sometimes these are not basic
operations

Balasubramanian V Introduction to Design & Analysis of Algorithm

Non-basic Operations

 When arithmetic, relational and logical
operations are not basic operations?

e Operations depend on the input size
o Arithmetic operations on very large numbers
e Logical operations on very long bit strings
e Etc.

Balasubramanian V Introduction to Design & Analysis of Algorithm

Instance Size

 Number of elements
e Arrays, matrices
e Graphs (nodes or vertices)
e Sets
e Strings

 Number of bits/bytes
 Numbers
 Bit strings

e Maximum values
 Numbers

Balasubramanian V Introduction to Design & Analysis of Algorithm

Example

Number of times the while |]
loop repeats for each value j

INSERTION-SORT(A) \Bestrasse) cost
| for j < 2tolength|A] C
2 do key < AlJ])
3 > Insert Al j] into the sorted
sequence A[l..; —1]. 0
4 [< _j — 1 Cq
5 while; > 0 and A[i] > key (n+2)(n-1)/2 ¢5
6 do Al + 1] <« AJi] n(n-1)/2 cg
7 | «<— 1 — | n(n-1)/2 ¢
8 Ali + 1| < key Cy

Balasubramanian V

times

n

n—1

n—1

fI _ l CLLIN

> st

D it =1
n

)3 jzz(fj — D

n—1

From: Cormen, T., C. Leiserson, R. Rivest, and C. Stein, Introduction to Algorithms, MIT Press, 2001.

Introduction to Design & Analysis of Algorithm

10

Measure Disk Access

e Use for disk-based algorithm
 Measure the performance of

ndex structures
Databases

Retrieval algorithm

e Cost of other operations Is considered
negligible, compared to disk access.

Balasubramanian V Introduction to Design & Analysis of Algorithm

11

Measure Used Memory

e Measure the memory space required during
runtime.

« Memory can be reused within the algorithm

 Mandatory in some applications with
memory limitation

Balasubramanian V Introduction to Design & Analysis of Algorithm 12

Asymptotic notations
*Asymptotic tight bound ®

«®(g(n)) = {f(n)| there are positive constants c,d

and n, such that c-g(n) < f(n)< d-g(n) for all n>n,}

c22(n)
/ f(n)
ff ...f*‘/
S 7 agn)
;"T _,,--f“""-- f,.- -
,-'r | - -~
/ :f/_ /
5T
.-"I _Ff|
f I
! n
n

f(n) =0O(g(n))

Balasubramanian V Introduction to

Design & Analysis of Algorithm

From: Cormen, T., C. Leiserson, R. Rivest, and C. Stein

Introduction to Algorithms, MIT Press, 2001.

[EY
w

Asymptotic notations

*Asymptotic lower bound Q

Q(g(n)) = {f(n)| there are positive constants C and N, such
that 0 < c-g(n) < f(n) for all n>ng}

f(n)

Balasubramanian V

fp

H

f(n)=C2(gn))

Introduction to Design & Analysis of Algorithm

From: Cormen, T., C. Leiserson, R. Rivest, and C. Stein,

Introduction to Algorithms, MIT Press, 2001.

=
SN

Asymptotic notations

«Asymptotic upper bound O

«O(g(n)) = {f(n)| there are positive constants € and N, such
that 0< f(n)< c-g(n) for all n>n}

£

5

cg(n) 8

e
& o
— ©
R
~ f(n) =
o X o
X S £
'y h =
/ :K“x ,z/ 2 g
>/_, I,-' : il) <
.I"x_f"l : O’ g
| I
I c 2
n 2 =
1o S5
f(n)y=0(g(n)) O 5
52
L £

=
(6

Balasubramanian V Introduction to Design & Analysis of Algorithm

Algorithm Design: Standard

e Use for easy problems

« Traditional design
e Greedy algorithms
 Divide-and-conquer
e Dynamic programming
e Search

Balasubramanian V Introduction to Design & Analysis of Algorithm

16

Greedy Algorithms

* Find the best way to solve the problem at
hand

e This solution leads to the best overall
solution

 Examples

 Dijkstra’s algorithm for shortest path with only
non-negative edge

* Fractional knapsack

Balasubramanian V Introduction to Design & Analysis of Algorithm

17

Divide-and-conquer

* Divide a problem of big instance to
iIndependent sub-problems of smaller
iInstance

* Find the solution for each sub-problem

e The solutions for sub-problems are
combined as the solution for the whole
problem.

 Examples
 Mergesort

Balasubramanian V Introduction to Design & Analysis of Algorithm

18

Dynamic programming
e Divide a problem of big instance to sub-
oroblems of smaller instance

* Find the best solution for each sub-problem

* Find the best way to combine different
combinations of sub-problems to solve the
whole problem.

 Examples
* Floyd’s algorithm for shortest path
e 0/1 knapsack

Balasubramanian V Introduction to Design & Analysis of Algorithm 19

Search

* View a solution to a problem as a sequence
of decisions

e Create a search tree in which

e Each node in the tree iIs a state of the
problem

e each level of the tree I1s one decision

 Each branch of the tree is one possible
decision

e Traverse the tree

« Examples
e Shortest path

Balasubramanian V Introduction to Design & Analysis of Algorithm 20

Algorithm Design: Advanced

* Probabillistic/randomized algorithms
e Approximation algorithms

 Use for hard problems

Balasubramanian V Introduction to Design & Analysis of Algorithm

21

Probabllistic/randomized Algorithms

e Use randomness in solving the problem

« Behavior of the algorithm is random

 Need average-case analysis

* Another set of definitions for complexity classes

 Examples:
e Quicksort
e Min cut

Balasubramanian V Introduction to Design & Analysis of Algorithm 22

Approximation Algorithms

* Glve near-optimal solution
e r-approximation algorithm
e The solution is within r of the optimal solution

e Examples:
e Vertex cover
e 0/1 Knapsack

Balasubramanian V Introduction to Design & Analysis of Algorithm

23

