
Balasubramanian V Introduction to Design & Analysis of 1

Algorithms
Introduction

Balasubramanian V Introduction to Design & Analysis of Algorithm 2

Outlines
• Algorithm Analysis

• Counting the number of operations
• How to count

• Worst case
• Average case
• Best case

• Asymptotic notations
• Upper bounds
• Lower bounds
• Tight bounds

Balasubramanian V Introduction to Design & Analysis of Algorithm 3

Outlines
• Algorithm Design

• Standard methods (for easy problems)
• Greedy algorithms
• Divide-and-conquer
• Dynamic programming
• Search

• Advanced methods (for hard problems)
• Probabilistic/randomized algorithms
• Approximation algorithms

Balasubramanian V Introduction to Design & Analysis of Algorithm 4

Typical Problems
• Sorting

• Given a set of values, sort the values.
• Optimization

• Given a set of Z such that …, find X from Z such
that f(X) is optimal (min or max).

• Given a graph G, find a path P from A to B in G such
that length of P is smallest.

• Calculating
• Given input X, calculate f(X).

• Given vertices of a polygon X, calculate the area of X.

• Others

Balasubramanian V Introduction to Design & Analysis of Algorithm 5

Algorithm Analysis
•Measure the resource
required in an algorithm

•Time
•Running time
•Disk access

•Space
•Memory

•When to measure
•Best case

•Bad!

•Worst case
•Upper bound
•Mostly used, in general
•Often occur

•Average case
•Often close to worst case
•Used for randomized
algorithm

Balasubramanian V Introduction to Design & Analysis of Algorithm 6

Measure Running Time
• Basically, counting the number of basic

operations required to solve a problem,
depending on the problem/instance size

• What is a basic operations?

• How to measure instance size

Balasubramanian V Introduction to Design & Analysis of Algorithm 7

Basic Operations
• What can be done in a constant time,

regardless of the size of the input
• Basic arithmetic operations, e.g. add, subtract,

shift, …
• Relational operations, e.g. <, >, <=, …
• Logical operations, e.g. and, or, not
• More complex arithmetic operations, e.g.

multiply, divide, log, …
• Etc.

• But sometimes these are not basic
operations

Balasubramanian V Introduction to Design & Analysis of Algorithm 8

Non-basic Operations
• When arithmetic, relational and logical

operations are not basic operations?
• Operations depend on the input size

• Arithmetic operations on very large numbers
• Logical operations on very long bit strings
• Etc.

Balasubramanian V Introduction to Design & Analysis of Algorithm 9

Instance Size
• Number of elements

• Arrays, matrices
• Graphs (nodes or vertices)
• Sets
• Strings

• Number of bits/bytes
• Numbers
• Bit strings

• Maximum values
• Numbers

Balasubramanian V Introduction to Design & Analysis of Algorithm 10

Example

From: Cormen, T., C. Leiserson, R. Rivest, and C. Stein, Introduction to Algorithms, MIT Press, 2001.

Number of times the while
loop repeats for each value j

Best case: 1Worst case: j

n(n-1)/2

n(n-1)/2

(n+2)(n-1)/2

Balasubramanian V Introduction to Design & Analysis of Algorithm 11

Measure Disk Access
• Use for disk-based algorithm
• Measure the performance of

• Index structures
• Databases
• Retrieval algorithm

• Cost of other operations is considered
negligible, compared to disk access.

Balasubramanian V Introduction to Design & Analysis of Algorithm 12

Measure Used Memory
• Measure the memory space required during

runtime.
• Memory can be reused within the algorithm
• Mandatory in some applications with

memory limitation

Balasubramanian V Introduction to Design & Analysis of Algorithm 13

Asymptotic notations
•Asymptotic tight bound Θ

•Θ(g(n)) = {f(n)| there are positive constants c,d
and n0 such that c⋅g(n) ≤ f(n)≤ d⋅g(n) for all n≥n0}

Fr
om

: C
or

m
en

, T
.,

C
. L

ei
se

rs
on

, R
. R

iv
es

t,
an

d
C

. S
te

in
,

In
tr

od
uc

tio
n

to
 A

lg
or

ith
m

s,
M

IT
 P

re
ss

, 2
00

1.

Balasubramanian V Introduction to Design & Analysis of Algorithm 14

Asymptotic notations
•Asymptotic lower bound Ω

•Ω(g(n)) = {f(n)| there are positive constants c and n0 such
that 0 ≤ c⋅g(n) ≤ f(n) for all n≥n0}

Fr
om

: C
or

m
en

, T
.,

C
. L

ei
se

rs
on

, R
. R

iv
es

t,
an

d
C

. S
te

in
,

In
tr

od
uc

tio
n

to
 A

lg
or

ith
m

s,
M

IT
 P

re
ss

, 2
00

1.

Balasubramanian V Introduction to Design & Analysis of Algorithm 15

Asymptotic notations
•Asymptotic upper bound Ο

•Ο(g(n)) = {f(n)| there are positive constants c and n0 such
that 0≤ f(n)≤ c⋅g(n) for all n≥n0}

Fr
om

: C
or

m
en

, T
.,

C
. L

ei
se

rs
on

, R
. R

iv
es

t,
an

d
C

. S
te

in
,

In
tr

od
uc

tio
n

to
 A

lg
or

ith
m

s,
M

IT
 P

re
ss

, 2
00

1.

Balasubramanian V Introduction to Design & Analysis of Algorithm 16

Algorithm Design: Standard
• Use for easy problems
• Traditional design

• Greedy algorithms
• Divide-and-conquer
• Dynamic programming
• Search

Balasubramanian V Introduction to Design & Analysis of Algorithm 17

Greedy Algorithms
• Find the best way to solve the problem at

hand
• This solution leads to the best overall

solution
• Examples

• Dijkstra’s algorithm for shortest path with only
non-negative edge

• Fractional knapsack

Balasubramanian V Introduction to Design & Analysis of Algorithm 18

Divide-and-conquer
• Divide a problem of big instance to

independent sub-problems of smaller
instance

• Find the solution for each sub-problem
• The solutions for sub-problems are

combined as the solution for the whole
problem.

• Examples
• Mergesort

Balasubramanian V Introduction to Design & Analysis of Algorithm 19

Dynamic programming
• Divide a problem of big instance to sub-

problems of smaller instance
• Find the best solution for each sub-problem
• Find the best way to combine different

combinations of sub-problems to solve the
whole problem.

• Examples
• Floyd’s algorithm for shortest path
• 0/1 knapsack

Balasubramanian V Introduction to Design & Analysis of Algorithm 20

Search
• View a solution to a problem as a sequence

of decisions
• Create a search tree in which
• Each node in the tree is a state of the

problem
• each level of the tree is one decision
• Each branch of the tree is one possible

decision
• Traverse the tree
• Examples

• Shortest path

Balasubramanian V Introduction to Design & Analysis of Algorithm 21

Algorithm Design: Advanced
• Probabilistic/randomized algorithms

• Approximation algorithms

• Use for hard problems

Balasubramanian V Introduction to Design & Analysis of Algorithm 22

Probabilistic/randomized Algorithms
• Use randomness in solving the problem
• Behavior of the algorithm is random
• Need average-case analysis
• Another set of definitions for complexity classes
• Examples:

• Quicksort
• Min cut

Balasubramanian V Introduction to Design & Analysis of Algorithm 23

Approximation Algorithms
• Give near-optimal solution
• r-approximation algorithm

• The solution is within r of the optimal solution
• Examples:

• Vertex cover
• 0/1 Knapsack

