Algorithms Introduction

Outlines

- Algorithm Analysis
 - Counting the number of operations
 - How to count
 - Worst case
 - Average case
 - Best case
 - Asymptotic notations
 - Upper bounds
 - Lower bounds
 - Tight bounds

Outlines

- Algorithm Design
 - Standard methods (for easy problems)
 - Greedy algorithms
 - Divide-and-conquer
 - Dynamic programming
 - Search
 - Advanced methods (for hard problems)
 - Probabilistic/randomized algorithms
 - Approximation algorithms

Typical Problems

- Sorting
 - Given a set of values, sort the values.
- Optimization
 - Given a set of Z such that ..., find X from Z such that f(X) is optimal (min or max).
 - Given a graph G, find a path P from A to B in G such that length of P is smallest.
- Calculating
 - Given input X, calculate f(X).
 - Given vertices of a polygon X, calculate the area of X.
- Others

Algorithm Analysis

•Measure the resource required in an algorithm

•Time

Running timeDisk access

Space
Memory

•When to measure •Best case •Bad!

- Worst case
 - •Upper bound
 - •Mostly used, in general
 - •Often occur
- •Average case
 - •Often close to worst case
 - •Used for randomized algorithm

Measure Running Time

- Basically, counting the number of basic operations required to solve a problem, depending on the problem/instance size
- What is a basic operations?
- How to measure instance size

Basic Operations

- What can be done in a constant time, regardless of the size of the input
 - Basic arithmetic operations, e.g. add, subtract, shift, ...
 - Relational operations, e.g. <, >, <=, …
 - Logical operations, e.g. and, or, not
 - More complex arithmetic operations, e.g. multiply, divide, log, ...
 - Etc.
 - But sometimes these are not basic operations

Non-basic Operations

- When arithmetic, relational and logical operations are not basic operations?
- Operations depend on the input size
 - Arithmetic operations on very large numbers
 - Logical operations on very long bit strings
 - Etc.

Instance Size

- Number of elements
 - Arrays, matrices
 - Graphs (nodes or vertices)
 - Sets
 - Strings
- Number of bits/bytes
 - Numbers
 - Bit strings
- Maximum values
 - Numbers

Example			
		Number of times t loop repeats for eac	
INSERTION-SORT(A)	Wortscause:1j	cost	times
1 for $j \leftarrow 2$ to $length[A]$		c_1	n
2 do $key \leftarrow A[j]$		c_2	n-1
3 \triangleright Insert $A[j]$ into the sorted			
sequence	A[1 j - 1].	0	n-1
4 $i \leftarrow j - 1$		c_4	n-1
5 while $i > 0$ and	A[i] > key (n+2)	2)(n-1)/2 C ₅	$\sum_{j=2}^{n} t_j$
6 do $A[i+1]$	$\leftarrow A[i]$	n(n-1)/2 C ₆	$\sum_{j=2}^{n} (t_j - 1)$
7 $i \leftarrow i -$	· 1 /	n(n-1)/2 C ₇	$\sum_{j=2}^{n} (t_j - 1)$
8 $A[i+1] \leftarrow key$		c_8	n-1

From: Cormen, T., C. Leiserson, R. Rivest, and C. Stein, Introduction to Algorithms, MIT Press, 2001.

Balasubramanian V

Introduction to Design & Analysis of Algorithm

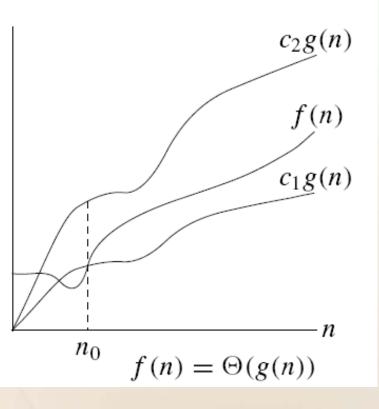
Measure Disk Access

- Use for disk-based algorithm
 - Measure the performance of
 - Index structures
 - Databases
 - Retrieval algorithm
- Cost of other operations is considered negligible, compared to disk access.

Measure Used Memory

- Measure the memory space required during runtime.
- Memory can be reused within the algorithm
- Mandatory in some applications with memory limitation

•Asymptotic notations •Asymptotic tight bound Θ • $\Theta(g(n)) = \{f(n)| \text{ there are positive constants } c,d$ and n_0 such that $c \cdot g(n) \le f(n) \le d \cdot g(n)$ for all $n \ge n_0$



From: Cormen, T., C. Leiserson, R. Rivest, and C. Stein Introduction to Algorithms, MIT Press, 2001

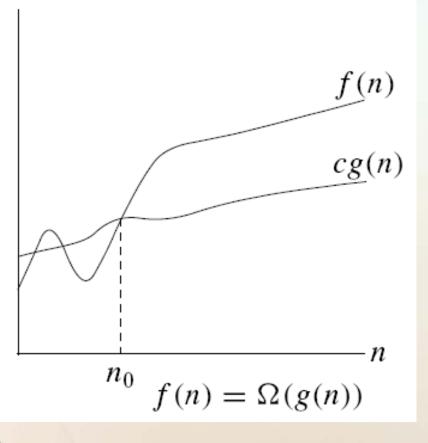
Balasubramanian V

13

Asymptotic notations

Asymptotic lower bound Ω

• $\Omega(g(n)) = \{f(n) | \text{ there are positive constants } c \text{ and } n_0 \text{ such that } 0 \le c \cdot g(n) \le f(n) \text{ for all } n \ge n_0 \}$



From: Cormen, T., C. Leiserson, R. Rivest, and C. Stein, Introduction to Algorithms, MIT Press, 2001

Balasubramanian V

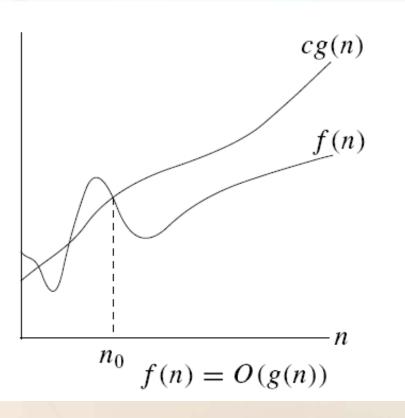
Introduction to Design & Analysis of Algorithm

14

Asymptotic notations

Asymptotic upper bound O

• $O(g(n)) = \{f(n) | \text{ there are positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le c \cdot g(n) \text{ for all } n \ge n_0 \}$



From: Cormen, T., C. Leiserson, R. Rivest, and C. Stein, Introduction to Algorithms, MIT Press, 2001

Balasubramanian V

Algorithm Design: Standard

- Use for easy problems
 - **Traditional design**
 - Greedy algorithms
 - Divide-and-conquer
 - Dynamic programming
 - Search

Greedy Algorithms

- Find the best way to solve the problem at hand
- This solution leads to the best overall solution
- Examples
 - Dijkstra's algorithm for shortest path with only non-negative edge
 - Fractional knapsack

Divide-and-conquer

- Divide a problem of big instance to independent sub-problems of smaller instance
- Find the solution for each sub-problem
- The solutions for sub-problems are combined as the solution for the whole problem.
- Examples
 - Mergesort

Dynamic programming

- Divide a problem of big instance to subproblems of smaller instance
- Find the best solution for each sub-problem
- Find the best way to combine different combinations of sub-problems to solve the whole problem.
- Examples
 - Floyd's algorithm for shortest path
 - 0/1 knapsack

Search

- View a solution to a problem as a sequence of decisions
- Create a search tree in which
- Each node in the tree is a state of the problem
- each level of the tree is one decision
- Each branch of the tree is one possible decision
- Traverse the tree
 - Examples
 - Shortest path

Algorithm Design: Advanced

- Probabilistic/randomized algorithms
- Approximation algorithms
- Use for hard problems

Probabilistic/randomized Algorithms

- Use randomness in solving the problem
- Behavior of the algorithm is random
- Need average-case analysis
- Another set of definitions for complexity classes
- Examples:
 - Quicksort
 - Min cut

Approximation Algorithms

- Give near-optimal solution
- *r*-approximation algorithm
 - The solution is within r of the optimal solution
- Examples:
 - Vertex cover
 - 0/1 Knapsack