
Copyright © 2007 SSN College of Engineering

Unit I Unit I –– Basic Concepts of Basic Concepts of
AlgorithmsAlgorithms
IntroductionIntroduction

Algorithm
Abu Abu JafarJafar Muhammad Muhammad IbnIbn MusuMusu AlAl--KhowarizmiKhowarizmi [Born: about 780 [Born: about 780
in Baghdad (now in Iraq). Died: about 850] in Baghdad (now in Iraq). Died: about 850]
An algorithm is a set of rules for carrying out calculation eithAn algorithm is a set of rules for carrying out calculation either by er by
hand or on a machine. hand or on a machine.
An algorithm is a finite stepAn algorithm is a finite step--byby--step procedure to achieve a required step procedure to achieve a required
result.result.

An algorithm is a sequence of computational steps that transformAn algorithm is a sequence of computational steps that transform
the input into the output. the input into the output.
An algorithm is a sequence of operations performed on data that An algorithm is a sequence of operations performed on data that
have to be organized in data structures. have to be organized in data structures.
An algorithm is an abstraction of a program to be executed on a An algorithm is an abstraction of a program to be executed on a
physical machine (model of Computation). physical machine (model of Computation).

1-3Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

What is an algorithm?
An An algorithmalgorithm is a sequence of unambiguous instructions is a sequence of unambiguous instructions

for solving a problem, i.e., for obtaining a required for solving a problem, i.e., for obtaining a required
output for any legitimate input in a finite amount of output for any legitimate input in a finite amount of
time.time.

“computer”

problem

algorithm

input output

1-4Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

Notion of algorithm

“computer”

Algorithmic solution

problem

algorithm

input output

1-5Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

Algorithms

It is not depended on programming language, machine.It is not depended on programming language, machine.
Are mathematical entities, which can be thought of as
running on some sort of idealized computer with an infinite
random access memory
Algorithm design is all about the mathematical theory
behind the design of good programs.

1-6Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

Contd…

Algorithmic is a branch of computer science that consists Algorithmic is a branch of computer science that consists
of designing and analyzing computer algorithmsof designing and analyzing computer algorithms
The The ““designdesign”” pertain to pertain to
•• The description of algorithm at an abstract level by means of a The description of algorithm at an abstract level by means of a

pseudo language, and pseudo language, and
•• Proof of correctness that is, the algorithm solves the given proProof of correctness that is, the algorithm solves the given problem blem

in all cases. in all cases.

The The ““analysisanalysis”” deals with performance evaluation deals with performance evaluation
(complexity analysis). (complexity analysis).
Random Access Machine (Random Access Machine (RAMRAM) model) model

1-7Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

Why study algorithm design?
Programming is a very complex task, and there are a number of aspects of
programming hat make it so complex. The first is that most programming
projects are very large, requiring the coordinated efforts of many people.
(This is the topic a course like software engineering.)
The next is that many programming projects involve storing and accessing
large quantities of data efficiently. (This is the topic of courses on data
structures and databases.)
The last is that many programming projects involve solving complex
computational problems, for which simplistic or naive solutions may not be
efficient enough. The complex problems may involve numerical data (the
subject of courses on numerical analysis), but often they involve discrete
data. This is where the topic of algorithm design and analysis is important.
The focus of this course is on how to design good algorithms, and how to
analyze their efficiency. This is among the most basic aspects of good
programming.

1-8Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

Contd…

Algorithms help us to understand scalability.
•Performance often draws the line between what is feasible and
what is impossible.
•Algorithmic mathematics provides a languagefor talking
about program behavior.
•Performance is the currencyof computing.
•The lessons of program performance generalize to other
computing resources.
•Speed is fun!

1-9Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

Random Access Machine
A A Random Access Machine Random Access Machine (RAM) consists of:(RAM) consists of:

•• a fixed a fixed programprogram
•• an unbounded an unbounded memorymemory
•• a reada read--only only input tapeinput tape
•• a writea write--only only output tapeoutput tape

Each Each memory registermemory register can hold an arbitrary integer (*)can hold an arbitrary integer (*)

Each Each tape celltape cell can hold a single symbol from a finite can hold a single symbol from a finite alphabet alphabet ΣΣ

. . .

Program

Memory

...

. . .

output tape

input tape

Instruction set:Instruction set:
•• x x ←← y, y, x x ←← y y {+, {+, −−, *, div, mod} , *, div, mod} zz
•• gotogoto labellabel
•• if if yy {<, {<, ≤≤, =, , =, ≥≥ ,> , ,> , ≠≠} } zz gotogoto labellabel
•• xx ←← input, output input, output ←← yy
•• halthalt

Addressing modes:Addressing modes:
•• xx may be direct or indirect may be direct or indirect

referencereference
•• yy and and zz may be constants, may be constants,

direct or indirect referencesdirect or indirect references

1-10Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

Contd…

Why analyze algorithms?Why analyze algorithms?
•• evaluate algorithm performanceevaluate algorithm performance
•• compare different algorithmscompare different algorithms

Analyze what about them?Analyze what about them?
•• running time, memory usage, solution qualityrunning time, memory usage, solution quality
•• worstworst--case and case and ““typicaltypical”” casecase

Computational complexityComputational complexity
•• understanding the intrinsic difficulty of computational problemsunderstanding the intrinsic difficulty of computational problems --

classifying problems according to difficultyclassifying problems according to difficulty
•• algorithms provide upper boundalgorithms provide upper bound
•• to show problem is hard, must show that any algorithm to solve ito show problem is hard, must show that any algorithm to solve it t

requires at least a given amount of resourcesrequires at least a given amount of resources
•• transform problems to establish transform problems to establish ““equivalentequivalent”” difficultydifficulty

1-11Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

Example of computational problem:
sorting
Statement of problem:Statement of problem:

•• Input:Input: A sequence of A sequence of nn numbers <anumbers <a11, , aa22, , ……, a, ann>>

•• Output:Output: A reordering of the input sequence <aA reordering of the input sequence <a´́
11, , aa´́

22, , ……, a, a´́
nn> so that > so that

aa´́
ii ≤≤ aa´́

jj whenever whenever ii < < jj

Instance: The sequence <5, 3, 2, 8, 3>Instance: The sequence <5, 3, 2, 8, 3>

Algorithms:Algorithms:
•• Selection sortSelection sort
•• Insertion sortInsertion sort
•• Merge sortMerge sort
•• (many others)(many others)

1-12Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

Selection Sort

Input: array Input: array a[1],a[1],……,a[n],a[n]

Output: array Output: array aa sorted in nonsorted in non--decreasing orderdecreasing order

Algorithm:Algorithm:

for i=1 to n
swap a[i] with smallest of a[i],…a[n]

• see also pseudocode, section 3.1

1-13Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

Insertion Sort

1-14Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

Contd..

1-15Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

Contd…

1-16Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

Contd…

Worst-case: (usually)

•T(n) =maximum time of algorithm on any input of size n.

Average-case: (sometimes)

•T(n) =expected time of algorithm over all inputs of size n.

•Need assumption of statistical distribution of inputs.

Best-case: (bogus)

•Cheat with a slow algorithm that works fast on someinput

1-17Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

Contd…

1-18Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

Contd…

1-19Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

Contd…

1-20Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

Contd…

1-21Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

Some Well-known Computational
Problems

SortingSorting
SearchingSearching
Shortest paths in a graphShortest paths in a graph
Minimum spanning treeMinimum spanning tree
Primality testingPrimality testing
Traveling salesman problemTraveling salesman problem
Knapsack problemKnapsack problem
ChessChess
Towers of HanoiTowers of Hanoi
Program terminationProgram termination

1-22Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

What is an algorithm?
Recipe, process, method, technique, procedure, routine,Recipe, process, method, technique, procedure, routine,……
with following requirements:with following requirements:

1.1. FinitenessFiniteness
terminates after a finite number of stepsterminates after a finite number of steps

2.2. DefinitenessDefiniteness
rigorously and unambiguously specifiedrigorously and unambiguously specified

3.3. InputInput
valid inputs are clearly specifiedvalid inputs are clearly specified

4.4. OutputOutput
can be proved to produce the correct output given a valid inputcan be proved to produce the correct output given a valid input

5.5. EffectivenessEffectiveness
steps are sufficiently simple and basicsteps are sufficiently simple and basic

1-23Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

Euclid’s Algorithm

Problem: Find gcd(Problem: Find gcd(m,nm,n), the greatest common divisor of two), the greatest common divisor of two
nonnegative, not both zero integers nonnegative, not both zero integers m m and and nn

Examples: gcd(60,24) = 12, gcd(60,0) = 60, gcd(0,0) = ? Examples: gcd(60,24) = 12, gcd(60,0) = 60, gcd(0,0) = ?

EuclidEuclid’’s algorithm is based on repeated application of equalitys algorithm is based on repeated application of equality
gcd(gcd(m,nm,n) = gcd() = gcd(n, m n, m mod mod nn))

until the second number becomes 0, which makes the problemuntil the second number becomes 0, which makes the problem
trivial.trivial.

Example: gcd(60,24) = gcd(24,12) = gcd(12,0) = 12Example: gcd(60,24) = gcd(24,12) = gcd(12,0) = 12

1-24Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

Two descriptions of Euclid s
algorithm

Step 1 If Step 1 If nn = 0, return = 0, return mm and stop; otherwise go to Step 2and stop; otherwise go to Step 2
Step 2 Divide Step 2 Divide mm by by n n and assign the value fo the remainder toand assign the value fo the remainder to rr
Step 3 Assign the value of Step 3 Assign the value of n n to to mm and the value of and the value of rr to to n. n. Go toGo to

Step 1.Step 1.

whilewhile nn ≠≠ 00 dodo
r r ←← m m mod mod nn
mm←← n n
n n ←← rr

returnreturn mm

1-25Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

Other methods for computing
gcd(m,n)

Consecutive integer checking algorithmConsecutive integer checking algorithm
Step 1 Assign the value of min{Step 1 Assign the value of min{m,nm,n} to } to tt
Step 2 Divide Step 2 Divide mm by by t. t. If the remainder is 0, go to Step 3;If the remainder is 0, go to Step 3;

otherwise, go to Step 4otherwise, go to Step 4
Step 3 Divide Step 3 Divide nn by by t. t. If the remainder is 0, return If the remainder is 0, return tt and stop;and stop;

otherwise, go to Step 4otherwise, go to Step 4
Step 4 Decrease Step 4 Decrease t t by 1 and go to Step 2by 1 and go to Step 2

1-26Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

Other methods for gcd(m,n) [cont.]

MiddleMiddle--school procedureschool procedure
Step 1 Find the prime factorization of Step 1 Find the prime factorization of mm
Step 2 Find the prime factorization of Step 2 Find the prime factorization of nn
Step 3 Find all the common prime factorsStep 3 Find all the common prime factors
Step 4 Compute the product of all the common prime factorsStep 4 Compute the product of all the common prime factors

and return it as gcdand return it as gcd(m,n(m,n))

Is this an algorithm?Is this an algorithm?

1-27Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

Sieve of Eratosthenes
Input: Input: Integer Integer n n ≥≥ 22
Output: List of primes less than or equal to Output: List of primes less than or equal to nn
for for p p ←← 22 to to nn do do AA[[pp]] ←← pp

for for p p ←← 22 to to ⎣⎣nn⎦⎦ dodo
if if AA[[pp]] ≠≠ 0 //0 //p p hasnhasn’’t been previously eliminated from the listt been previously eliminated from the list

j j ←← pp** pp
while while j j ≤≤ nn dodo

AA[[jj]] ←← 0 0 //mark element as eliminated//mark element as eliminated

j j ←← jj + p+ p

Example: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Example: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2018 19 20

1-28Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

Why study algorithms?

Theoretical importanceTheoretical importance

•• the core of computer sciencethe core of computer science

Practical importancePractical importance

•• A practitionerA practitioner’’s toolkit of known algorithmss toolkit of known algorithms

•• Framework for designing and analyzing algorithms for Framework for designing and analyzing algorithms for
new problemsnew problems

1-29Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

Basic Issues Related to
Algorithms

How to design algorithmsHow to design algorithms
How to analyze algorithmsHow to analyze algorithms

1-30Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

Algorithm Problem solving

Understand the problemUnderstand the problem
Decide on: Decide on:
•• Computational MeansComputational Means
•• Exact Exact vsvs Approximate solvingApproximate solving
•• Data structuresData structures
•• Algorithm design techniquesAlgorithm design techniques

Design an algorithmDesign an algorithm
Prove correctnessProve correctness
AnalyseAnalyse an algorithman algorithm
Code an algorithm Code an algorithm

1-31Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

Understand the problem

First important step First important step
What must be done rather than how to do it What must be done rather than how to do it
InputInput--instanceinstance of the problemof the problem
Ascertaining the capability of computational deviceAscertaining the capability of computational device
Generic oneGeneric one--processor, randomprocessor, random--accessaccess--machine (RAM)machine (RAM)--
instructions are executed one by one.instructions are executed one by one.
computer resourcescomputer resources-- memory, BW, CPU measures memory, BW, CPU measures
efficiency of algorithm.efficiency of algorithm.

1-32Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

Choosing between exact and approximate problem solving

An algorithm that can solve the problem exactly is called an An algorithm that can solve the problem exactly is called an
exact algorithm. The algorithm that can solve the problem exact algorithm. The algorithm that can solve the problem
approximately is called an approximation algorithm. approximately is called an approximation algorithm.
The problems that can be approximately areThe problems that can be approximately are
•• extracting square rootsextracting square roots
•• solving nonsolving non--linear equationslinear equations
•• evaluate definite integralsevaluate definite integrals
•• for some, algorithm for solving a problem exactly is not acceptafor some, algorithm for solving a problem exactly is not acceptable ble

because it can be slow due to its intrinsic complexity of that because it can be slow due to its intrinsic complexity of that
problem. For ex, like traveling salesman problem which finds problem. For ex, like traveling salesman problem which finds
shortest tour through n cities.shortest tour through n cities.

1-33Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

Deciding on appropriate data
structures

Algorithm + Data Structures = Program Algorithm + Data Structures = Program

1-34Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

Algorithmic design technique

An algorithm design technique is a general approach to An algorithm design technique is a general approach to
solving problems mathematically that is applicable to a solving problems mathematically that is applicable to a
variety of problems from different areas of computing.variety of problems from different areas of computing.
Algorithm design technique provides guidance for Algorithm design technique provides guidance for

designing algorithms for new problems or problems for designing algorithms for new problems or problems for
which there is no satisfactory algorithm. It makes it which there is no satisfactory algorithm. It makes it
possible to classify algorithm according to underlying possible to classify algorithm according to underlying
design idea.design idea.

1-35Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

Algorithm design
techniques/strategies

Brute forceBrute force

Divide and conquerDivide and conquer

Decrease and conquerDecrease and conquer

Transform and conquerTransform and conquer

Space and time tradeoffsSpace and time tradeoffs

Greedy approachGreedy approach

Dynamic programmingDynamic programming

Iterative improvementIterative improvement

Backtracking Backtracking

Branch and boundBranch and bound

1-36Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

Analysis of algorithms

How good is the algorithm?How good is the algorithm?
•• time efficiencytime efficiency
•• space efficiencyspace efficiency

Does there exist a better algorithm?Does there exist a better algorithm?
•• lower boundslower bounds
•• optimalityoptimality

1-37Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

Important problem types

sortingsorting

searchingsearching

string processingstring processing

graph problemsgraph problems

combinatorial problemscombinatorial problems

geometric problemsgeometric problems

numerical problemsnumerical problems

1-38Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

Fundamental data structures

listlist

•• arrayarray

•• linked listlinked list

•• string string

stackstack

queuequeue

priority queuepriority queue

graphgraph

treetree

set and dictionaryset and dictionary

1-39Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

Analysis of algorithms

Issues:Issues:
•• correctnesscorrectness
•• time efficiencytime efficiency
•• space efficiencyspace efficiency
•• optimalityoptimality

Approaches:Approaches:
•• theoretical analysistheoretical analysis
•• empirical analysisempirical analysis

1-40Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

y
efficiency

Time efficiency is analyzed by determining the number of Time efficiency is analyzed by determining the number of
repetitions of the repetitions of the basic operationbasic operation as a function of as a function of input sizeinput size

Basic operationBasic operation: the operation that contributes most : the operation that contributes most
towards the running time of the algorithmtowards the running time of the algorithm

TT((nn)) ≈≈ ccopopCC((nn))
running time execution time

for basic operation
Number of times
basic operation is

executed

input size

1-41Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

Input size and basic operation
examples

Basic operationBasic operationInput size measureInput size measureProblemProblem

Visiting a vertex or Visiting a vertex or
traversing an edgetraversing an edge#vertices and/or edges#vertices and/or edgesTypical graph problemTypical graph problem

DivisionDivisionnn’’size = number of digits size = number of digits
(in binary representation)(in binary representation)

Checking primality of Checking primality of
a given integer a given integer nn

Multiplication of two Multiplication of two
numbersnumbers

Matrix dimensions or Matrix dimensions or
total number of elementstotal number of elements

Multiplication of two Multiplication of two
matricesmatrices

Key comparisonKey comparisonNumber of listNumber of list’’s items, s items,
i.e. i.e. nn

Searching for key in a Searching for key in a
list of list of nn itemsitems

1-42Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

p y
efficiency

Select a specific (typical) sample of inputsSelect a specific (typical) sample of inputs

Use physical unit of time (e.g., milliseconds)Use physical unit of time (e.g., milliseconds)
oror

Count actual number of basic operationCount actual number of basic operation’’s executionss executions

Analyze the empirical dataAnalyze the empirical data

1-43Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

, g ,
case

For some algorithms efficiency depends on form of input:For some algorithms efficiency depends on form of input:

Worst case: CWorst case: Cworstworst((nn)) –– maximum over inputs of size maximum over inputs of size nn

Best case: CBest case: Cbestbest((nn)) –– minimum over inputs of size minimum over inputs of size nn

Average case: CAverage case: Cavgavg((nn)) –– ““averageaverage”” over inputs of size over inputs of size nn
•• Number of times the basic operation will be executed on typical Number of times the basic operation will be executed on typical inputinput
•• NOT the average of worst and best caseNOT the average of worst and best case
•• Expected number of basic operations considered as a random variaExpected number of basic operations considered as a random variable ble

under some assumption about the probability distribution of all under some assumption about the probability distribution of all
possible inputspossible inputs

1-44Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

Example: Sequential search

• Worst case

• Best case

1-45Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

Types of formulas for basic operation s
count

Exact formulaExact formula
e.g., C(e.g., C(nn) =) = nn((nn--1)/21)/2

Formula indicating order of growth with specific Formula indicating order of growth with specific
multiplicative constantmultiplicative constant

e.g., C(e.g., C(nn)) ≈≈ 0.5 0.5 nn22

Formula indicating order of growth with unknown Formula indicating order of growth with unknown
multiplicative constantmultiplicative constant

e.g., C(e.g., C(nn)) ≈≈ cncn22

1-46Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

Order of growth

Most important: Order of growth within a constant multiple Most important: Order of growth within a constant multiple
as as nn→∞→∞

Example:Example:
•• How much faster will algorithm run on computer that is How much faster will algorithm run on computer that is

twice as fast?twice as fast?

•• How much longer does it take to solve problem of double How much longer does it take to solve problem of double
input size?input size?

1-47Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

Values of some important functions as
n →∞

1-48Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

Asymptotic order of growth

A way of comparing functions that ignores constant factors and A way of comparing functions that ignores constant factors and
small input sizessmall input sizes

O(O(gg((nn)): class of functions)): class of functions ff((nn) that grow) that grow no fasterno faster than than gg((nn))
(upper bound)(upper bound)
ΘΘ((gg((nn)): class of functions)): class of functions ff((nn) that grow) that grow at same rateat same rate as as gg((nn))
(Same bound)(Same bound)
ΩΩ((gg((nn)): class of functions)): class of functions ff((nn) that grow) that grow at least as fastat least as fast as as gg((nn))
(Lower(Lower bound)bound)

1-49Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

Big-oh

1-50Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

Big-omega

1-51Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

Big-theta

1-52Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

g g g
definition

Definition:Definition: ff((nn) is in O() is in O(gg((nn)) if order of growth of)) if order of growth of ff((nn)) ≤≤ order order
of growth of of growth of gg((nn) (within constant multiple),) (within constant multiple),
i.e., there exist positive constant i.e., there exist positive constant cc and nonand non--negative integer negative integer
nn00 such thatsuch that

ff((nn)) ≤≤ c gc g((nn) for every) for every nn ≥≥ nn0 0

Examples:Examples:
1010nn is O(is O(nn22))

55nn+20 is O(+20 is O(nn))

1-53Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

p p y p
growth

ff((nn)) ∈∈ O(O(ff((nn))))

ff((nn)) ∈∈ O(O(gg((nn)) iff)) iff gg((nn)) ∈Ω∈Ω((ff(n))(n))

If If ff ((nn)) ∈∈ O(O(gg ((nn)) and)) and gg((nn)) ∈∈ O(O(hh((nn)) , then)) , then ff((nn)) ∈∈ O(O(hh((nn))))

Note similarity with Note similarity with a a ≤≤ bb

If If ff11((nn)) ∈∈ O(O(gg11((nn)) and)) and ff22((nn)) ∈∈ O(O(gg22((nn)) , then)) , then
ff11((nn)) ++ ff22((nn)) ∈∈ O(max{O(max{gg11((nn),), gg22((nn)}))})

1-54Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

limits

limlim TT((nn)/)/gg((nn) =) =

00 order of growth of TT((n)n) < order of growth of gg((nn))

c c > 0> 0 order of growth of TT((n)n) = order of growth of gg((nn))

∞∞ order of growth of TT((n)n) > order of growth of gg((nn))

Examples:Examples:
• 1010nn vs. vs. nn22

• nn((nn+1)/2 vs. +1)/2 vs. nn22

nn→∞→∞

1-55Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

p S g
formula

LL’’HôpitalHôpital’’s rule: If s rule: If limlimnn→∞→∞ ff((nn) =) = limlimnn→∞→∞ g(ng(n) =) = ∞∞ and and
the derivatives the derivatives ff´́, , gg´́ exist, thenexist, then

StirlingStirling’’s formula: s formula: nn! ! ≈≈ (2(2ππnn))1/2 1/2 ((nn/e)/e)nn

ff((nn))
gg((nn))

limlim
nn→∞→∞

= f f ´́((nn))
g g ´́((nn))

limlim
nn→∞→∞

Example: log Example: log nn vs. vs. nn

Example: Example: 22nn vs. vs. nn!!

1-56Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

Orders of growth of some important
functions

All logarithmic functions logAll logarithmic functions loga a nn belong to the same classbelong to the same class
ΘΘ(log (log nn)) no matter what the logarithmno matter what the logarithm’’s base s base a a > 1 is> 1 is

All polynomials of the same degree All polynomials of the same degree k k belong to the same class: belong to the same class:
aakknnkk + + aakk--11nnkk--11 + + …… + + aa0 0 ∈∈ ΘΘ((nnkk))

Exponential functions Exponential functions aan n have different orders of growth for have different orders of growth for
different different aa’’ss

order order log log n < n < order order nnαα ((αα>0) < order >0) < order aann < order < order nn! < order ! < order nnnn

1-57Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

y p y
classes

factorialfactorialnn!!

exponentialexponential22nn

cubiccubicnn33

quadraticquadraticnn22

nn--loglog--nnn n log log nn

linearlinearnn

logarithmiclogarithmiclog log nn

constantconstant11

1-58Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

y
algorithms

General Plan for AnalysisGeneral Plan for Analysis

Decide on parameter Decide on parameter nn indicating indicating input sizeinput size

Identify algorithmIdentify algorithm’’s s basic operationbasic operation

Determine Determine worstworst, , averageaverage, and , and bestbest cases for input of size cases for input of size nn

Set up a sum for the number of times the basic operation is Set up a sum for the number of times the basic operation is
executedexecuted

Simplify the sum using standard formulas and rules (see Simplify the sum using standard formulas and rules (see
Appendix A)Appendix A)

1-59Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

Useful summation formulas and rules
ΣΣll≤≤ii≤≤uu1 = 1+1+1 = 1+1+……+1 = +1 = u u -- l l + 1+ 1

In particular, In particular, ΣΣll≤≤ii≤≤uu1 = 1 = n n -- 1 + 1 = 1 + 1 = n n ∈∈ ΘΘ((nn))

ΣΣ11≤≤ii≤≤nn ii = 1+2+= 1+2+……++nn = = nn((nn+1)/2 +1)/2 ≈≈ nn22/2 /2 ∈∈ ΘΘ((nn22))

ΣΣ11≤≤ii≤≤nn ii22 = 1= 122+2+222++……++nn22 = = nn((nn+1)(2+1)(2nn+1)/6 +1)/6 ≈≈ nn33/3 /3 ∈∈ ΘΘ((nn33))

ΣΣ00≤≤ii≤≤nn aaii = 1= 1 + + a a ++……+ + aann = (= (aann+1 +1 -- 1)/(1)/(a a -- 1) for any 1) for any a a ≠≠ 11
In particular, In particular, ΣΣ00≤≤ii≤≤nn 22ii = 2= 20 0 + 2+ 21 1 ++……+ 2+ 2nn = 2= 2nn+1+1 -- 1 1 ∈∈ ΘΘ(2(2nn))

ΣΣ((aaii ±± bbi i) =) = ΣΣaaii ±± ΣΣbbi i ΣΣcacaii = = ccΣΣaaii ΣΣll≤≤ii≤≤uuaaii = = ΣΣll≤≤ii≤≤mmaaii + + ΣΣmm+1+1≤≤ii≤≤uuaaii

1-60Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

Example 1: Maximum element

1-61Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

p q
problem

1-62Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

p
multiplication

1-63Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

Example 4: Gaussian
elimination
AlgorithmAlgorithm GaussianEliminationGaussianElimination((AA[0..[0..nn--1,0..1,0..nn])])
//Implements Gaussian elimination of an //Implements Gaussian elimination of an nn--byby--((nn+1) matrix+1) matrix AA
forfor ii ←← 00 toto n n -- 22 dodo

for for jj ←← i i + 1+ 1 to to n n -- 11 do do
forfor kk ←← ii toto n n dodo

AA[[jj,,kk]] ←← AA[[jj,,kk]] -- AA[[ii,,kk]] ∗∗ AA[[jj,,ii] /] / AA[[ii,,ii]]

Find the efficiency class and a constant factor improvement.Find the efficiency class and a constant factor improvement.

1-64Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

p g y
digits

It cannot be investigated the way the

1-65Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

y
Algorithms

Decide on a parameter indicating an inputDecide on a parameter indicating an input’’s size.s size.

Identify the algorithmIdentify the algorithm’’s basic operation. s basic operation.

Check whether the number of times the basic op. is executed Check whether the number of times the basic op. is executed
may vary on different inputs of the same size. (If it may, the may vary on different inputs of the same size. (If it may, the
worst, average, and best cases must be investigated worst, average, and best cases must be investigated
separately.)separately.)

Set up a recurrence relation with an appropriate initial Set up a recurrence relation with an appropriate initial
condition expressing the number of times the basic op. is condition expressing the number of times the basic op. is
executed.executed.

Solve the recurrence (or, at the very least, establish its Solve the recurrence (or, at the very least, establish its
solutionsolution’’s order of growth) by backward substitutions or s order of growth) by backward substitutions or
another method.another method.

1-66Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

Example 1: Recursive evaluation of
n!

Definition: n ! = 1 ∗ 2 ∗ … ∗(n-1) ∗ n for n ≥
1 and 0! = 1

Recursive definition of n!: F(n) = F(n-1) ∗ n
for n ≥ 1 and

F(0) = 1

1-67Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

Solving the recurrence for M(n)

M(M(nn) = M() = M(nn--1) + 1, M(0) = 01) + 1, M(0) = 0

1-68Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

p
Puzzle

1

2

3

Recurrence for number of moves:Recurrence for number of moves:

1-69Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

g
moves

M(M(nn) = 2M() = 2M(nn--1) + 1, M(1) = 11) + 1, M(1) = 1

1-70Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

Puzzle

 n

n-1 n-1

n-2 n-2 n-2 n-2

1 1

...
2

1 1

2

1 1

2

1 1

2

1-71Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

Example 3: Counting #bits

1-72Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

Fibonacci numbers
The Fibonacci numbers:The Fibonacci numbers:

0, 1, 1, 2, 3, 5, 8, 13, 21, 0, 1, 1, 2, 3, 5, 8, 13, 21, ……

The Fibonacci recurrence:The Fibonacci recurrence:
F(F(nn) = F() = F(nn--1) + F(1) + F(nn--2) 2)
F(0) = 0 F(0) = 0
F(1) = 1F(1) = 1

General 2General 2ndnd order linear homogeneous recurrence with order linear homogeneous recurrence with
constant coefficients:constant coefficients:

aaX(X(nn) +) + bbX(X(nn--1) + 1) + ccXX(n(n--2) 2) == 00

1-73Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

S g () () (
2) = 0

Set up the characteristic equation (quadratic)Set up the characteristic equation (quadratic)
arar22 + + brbr + + cc == 00

Solve to obtain roots Solve to obtain roots rr11 and and rr22

General solution to the recurrenceGeneral solution to the recurrence
if if rr1 1 and and rr2 2 are two distinct real roots: X(are two distinct real roots: X(nn) =) = ααrr11

n n + + ββrr22
nn

if if rr1 1 == rr2 2 = = rr are two equal real roots: X(are two equal real roots: X(nn) =) = ααrrn n + + ββnrnr nn

Particular solution can be found by using initial conditionsParticular solution can be found by using initial conditions

1-74Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

numbers

F(F(nn) = F() = F(nn--1) + F(1) + F(nn--2) or F(2) or F(nn)) -- F(F(nn--1) 1) -- F(F(nn--2) = 02) = 0

Characteristic equation:Characteristic equation:

Roots of the characteristic equation:Roots of the characteristic equation:

General solution to the recurrence:General solution to the recurrence:

Particular solution for F(0) =0, F(1)=1:Particular solution for F(0) =0, F(1)=1:

1-75Copyright © 2007 SSN College Of Engineering. CS1201- “Introduction to the Design & Analysis of Algorithms”

Computing Fibonacci numbers

1.1. DefinitionDefinition--based recursive algorithmbased recursive algorithm

2.2. Nonrecursive definitionNonrecursive definition--based algorithmbased algorithm

3.3. Explicit formula algorithmExplicit formula algorithm

4.4. Logarithmic algorithm based on formula:Logarithmic algorithm based on formula:

FF((nn--1)1) FF((nn))

FF((nn)) FF((nn+1)+1)

0 10 1

1 11 1
==

nn

for for nn≥≥1,1, assuming an efficient way of computing matrix powers.assuming an efficient way of computing matrix powers.

