Unit I — Basic Concepts of,
Algorithms

Introduction

Abu Jafar Muhammad Ibn Musu Al-Khowarizmi [Born: about 780
in Baghdad (now in Iraq). Died: about 850]

An algorithm is a set of rules for carrying out calculation either by
hand or on a machine.

An algorithm is a finite step-by-step procedure to achieve a required
result.

An algorithm is a sequence of computational steps that transform
the input into the output.

An algorithm is a sequence of operations performed on data that
have to be organized in data structures.

An algorithm is an abstraction of a program to be executed on a
physical machine (model of Computation).

Ir'rr

LR A |
An algorithm is a sequence of unambiguous instructions

for solving a problem, i.e., for obtaining a required
output for any legitimate input in a finite amount of
time.

“computer”

“computer”

It is not depended on programming language, machine.

Are mathematical entities, which can be thought of as
running on some sort of idealized computer with an infinite
random access memory

Algorithm design is all about the mathematical theory

behind the design of good programs.

r'rr
LR A |
Algorithmic is a branch of computer science that consists
of designing and analyzing computer algorithms

The “design pertain to

The description of algorithm at an abstract level by means of a
pseudo language, and

Proof of correctness that is, the algorithm solves the given problem
in all cases.

The ““analysis” deals with performance evaluation
(complexity analysis).
Random Access Machine (RAM) model

vra
Programming is a very complex task, and there are a number of aspects of
programming hat make it so complex. The first is that most programming

projects are very large, requiring the coordinated efforts of many people.
(This 1s the topic a course like software engineering.)

The next is that many programming projects involve storing and accessing
large quantities of data efficiently. (This is the topic of courses on data
structures and databases.)

The last is that many programming projects involve solving complex
computational problems, for which simplistic or naive solutions may not be
efficient enough. The complex problems may involve numerical data (the
subject of courses on numerical analysis), but often they involve discrete
data. This 1s where the topic of algorithm design and analysis is important.

The focus of this course is on how to design good algorithms, and how to
analyze their efficiency. This 1s among the most basic aspects of good
programming.

Algorithms help us to understand scalability.

*Performance often draws the line between what 1s feasible and
what 1s impossible.

*Algorithmic mathematics provides a languagefor talking
about program behavior.

*Performance 1s the currencyof computing.

*The lessons of program performance generalize to other
computing resources.

*Speed 1s fun!

A Random Access Machine (RAM) consists of:

a fixed program

an unbounded memory.
a read-only input tape
a write-only output tape Program

Each memory register can hold an arbitrary integer (*)
Each tape cell can hold a single symbol from a finite alphabet % Memory

Instruction set:

X <y, x <y {+,—, % div, mod} z . :
Ty Addressing modes:

ify i<, <,= > >, % zgoto label x may be direct or indirect

reference

y and z may be constants,
direct or indirect references

X <— input, output < y
halt

Why analyze algorithms?
evaluate algorithm performance
compare different algorithms

Analyze what about them?
running time, memory usage, solution quality

worst-case and “typical” case

Computational complexity

understanding the intrinsic difficulty off computational problems -
classifying problems according to difficulty

algorithms provide upper bound

to show problem is hard, must show that any algorithm to solve it
requires at least a given amount of resources

transform problems to establish “equivalent difficulty

Statement of problem:

Input: A sequence of » numbers <a,, a,,...,a>

Output: A reordering of the input sequence <a, a,, ..., a > so that
a,sa; wheneveri<j

Instance: The sequence <5, 3. 2, 8, 3>

Algorithms:
Selection sort
Insertion sort
Mierge sort
(many others)

Input: array a[1],...,a[n]

Output: array a sorted in non-decreasing order

Algorithm:

for i=1 to n
swap a[i] with smallest of a[i],...a[n]

[INSERTION-SORT (4. 1)
for; < 2 ton
do key «— A| j]
1—j—1
while 7 > 0 and 4[] > key
do A[i+1]| < A[i]
i—1i—1

Ali+1] = key

“pseudocode” <

Worst-case: (usually)

*T(n) =maximum time of algorithm on any input of size n.
Average-case: (sometimes)

*T(n) =expected time of algorithm over all inputs of size n.
*Need assumption of statistical distribution of inputs.

Best-case: (bogus)

*Cheat with a slow algorithm that works fast on someinput

MERGE-SORT A|] . . n]
. It »=1, done.

. Recursively sort A] 1 .. [n/21]
and A[[n/2H1..n].

. “Merge’ the 2 sorted lists.

Key subroutine: MERGE

20 12 20 12 20 12 20 12 20 12

13 11 | 13 11 | 13 11 | 13 11 | 13 (1]

I(n) MERGE-SORT A[] . . #]
/- O(1) 1. It »=1, done.

27(n/2)| 2. Recursively sort A[1 . .[n/27]

Abuse and A| [n/2+1 .. n].
O(n) 3. “Merge” the 2 sorted lists

/

#leaves = l

Sorting

Searching

Shortest paths in a graph
Minimum spanning tree
Primality testing

Traveling salesman problem
Knapsack problem

Chess

Towers of Hanoi

Program termination

Recipe, process, method, technique, procedure, routine,...
with following requirements:

Kiniteness
terminates after a finite number of steps

Definiteness

rigorously and unambiguously specified
Input

valid inputs are clearly specified

Output

can be proved to produce the correct output given a valid input

Hifectiveness
steps are sufficiently simple and basic

rVrau
Problem: Find gcd(m,n), the greatest common divisor of two
nonnegative, not both zero integers m and n

Examples: ged(60,24) =12, gcd(60,0) =60, gcd(0,0)=7?

Fuclid’s algorithm is based on repeated application of equality
scd(m,n) = ged(n, m mod n)
until the second number becomes (), which makes the problem

trivial.

Example: ged(60,24) = gcd(24,12) = ged(12,0) = 12

Step 1 Ifin = 0, return 72 and stop; otherwise go to Step 2

Step 2° Divide m2 by n and assign the value fo the remainder to »

Step 3° Assign the value of 7 to m2 and the value of 7 to n. Go to
Step 1.

while 7 = 0 do
7 <— m mod 7
n<— 7
T

return m

Consecutive integer checking algorithm
Step 1 Assign the value of min{n,nf to ¢

Step 2 Divide m by «. If the remainder is 0, go to Step 35
otherwise, go to Step 4

Step 3 Divide n by 7. If the remainder is 0, return 7 and stop;

otherwise, go to Step 4
Step 4 Decrease ¢t by 1 and go to Step 2

Middle-school procedure

Step 1 Find the prime factorization of m
Step 2. Find the prime factorization of »
Step 3 Find all the common prime factors

Step 4 Compute the product of all the common prime factors

and return it as ged(m,n)

I's this an algorithm?

[nput: [nteger 7= 2
Output: IList off primes less than or equal to 7
forp < 2 tondo Alp| < p
for p < 2 to L72ldo
i Al p] = OF //prhasn’t been previously: elimmated from the list
J < Prp
while j <7 do

Alj] < O //mark element as eliminated

JSJ P

JExample:2 34 56 7 8 910 11 12 13 14 1S 16 17 18 1920

Theoretical importance

the core of computer science
Practical importance

A practitioner’s toolkit of known algorithms

Framework for designing and analyzing algorithms for
new problems

How to design algorithms

How to analyze algorithms

Understand the problem

Decide on:
Computational Means
Exact vs Approximate solving
Data structures

Algorithm design techniques

Design an algorithm

Prove correctness
Analyse an algorithm
Code an algorithm

First important step
What must be done rather than how to do it
Input-instance of the problem

Ascertaining the capability of computational device

Generic one-processor, random-access-machine (RAM)-

instructions are executed one by one.

computer resources- memory, BW, CPU measures
efficiency of algorithm.

r'rr
rraua
An algorithm that can solve the problem exactly is called an

exact algorithm. The algorithm that can solve the problem
approximately is' called an approximation algorithm.

The problems that can be approximately are
extracting square roots
solving non-linear equations
evaluate definite integrals

for some, algorithm for solving a problem exactly is not acceptable
because it can be slow due to its intrinsic complexity of that
problem. For ex; like traveling salesman problem which finds
shortest tour through n cities.

Algorithm + Data Structures = Program

An algorithm design technique is a general approach to
solving problems mathematically that is applicable to a
variety of problems from different areas of computing.

Algorithm design technique provides guidance for
designing algorithms for new problems or problems for
which there is no satisfactory algorithm. It makes it
possible to classity algorithm according to underlying
design idea.

Brute force

Divide and conquer

Decrease and conquer

Transform and conquer

Space and time tradeoffs

Greedy approach

Dynamic programming

Iterative improvement

Backtracking

Branch and bound

How good is the algorithm?
time efficiency
space efficiency

Does there exist a better algorithm?

lower bounds

optimality

sorting
searching

string processing
sraph problems

combinatorial problems

gcometric problems

numerical problems

list
array
linked list
string
stack

queue

priority queue

sraph
tree

set and dictionary

Issues:
correctness
time efficiency
space efficiency
optimality

Approaches:

theoretical analysis

empirical analysis

Time efficiency is analyzed by determining the number: ofi
repetitions of the basic operation as a function of input size

Basic operation: the operation that contributes most
towards the running time of the algorithm

I(n)=c, C(n)

Problem Input size measure

Searching for key in a | Number of list’s items,
list of » items i.e. n

Multiplication of two Matrix dimensions or
matrices total number of elements

Checking primality of | 7n’size = number of digits
a given integer n (in: binary representation)

Typical graph problem #vertices and/or edges

Buasic operation

Key comparison

Multiplication of two
numbers

Division

Visiting a vertex or
traversing an edge

Select a specific (typical) sample of inputs

Use physical unit of time (e.g., milliseconds)
or

Count actual number of basic operation’s executions

Analyze the empirical data

For some algorithms efficiency depends on form of input:

Worst case: C_ . (1) — maximum over inputs of size n

Best case: C,((77) — minimum over inputs of size n

o (14 >)) : -
Average case: C, . (n)—“average” over inputs of size »

Number of times the basic operation will be executed on typical input

NOT the average of worst and best case

Expected number of basic operations considered as a random variable
under some assumption about the probability distribution of all
possible inputs

ALGORITHM SequentialSearch(A[0..n — 1], K)
//Searches for a given value in a given array by sequential search
/Input: An array A[0..n — 1] and a search key K
//Output: The index of the first element of A that matches K
/1 or —1 if there are no matching elements

i <0
while i < and A[i] # K do

[«— i+ 1
if i < n return i
else return —1

Exact formula
e.g., C(n) = n(n-1)/2

Formula indicating order of growth with specitfic
multiplicative constant

e.g., C(n) = 0.5 n?

Formula indicating order of growth with unknown
multiplicative constant

e.g., C(n) = cn?

r'rr

rraua
Most important: Order of growth within a constant multiple
as n-—>00

Example:

How much faster will algorithm run on computer that is
twice as fast?

How much longer does it take to solve problem of double
input size?

n |log,n n nlogy,n n? n® 27 7!

10 33 18 3%10- 108 19° 10° 3.6-10°
10 | 66 107 66107 10* 10° 1.310°0 9.3.10%
10° | 10 10° 1010 108 10°

104 13 104 1.3.105 108 1012

10° 17 108 17108 1010 1015

109 1 20 109 20107 1012 1018

Table 2.1 Values (some approximate) of several functions important
for analysis of algorithms

r'rr

LR A |
A way of comparing functions that ignores constant factors and
small input sizes

O(g(n)): class of functions f(») that grow no faster than g(n)

(upper bound)

O(g(n)): class of functions f(n) that grow at same rate as g(n)
(Same bound)

()(g(n)): class of functions f(n) that grow at least as fast as g(n)

(ILower bound)

doesn't
matter

org Y| KR S M

Figure 2.1 Big-oh notation: ¢(n) € O{g(n))

doesn't
matter

doesn't
matter

Figure 2.3 Big-theta notation: ¢{n) € &(g(n))

r'rr

LR A |
Definition: f(7) is in O(g(n)) it oxrder of growth of f(n) < order
of growth of g(») (within constant multiple),
I.e., there exist positive constant ¢ and non-negative integer
1, such that

fn) = c g(n) for every n = n,

Examples:
107 is O(n?)

511420 is O(12)

f(n) € O(f(n))
f(n) € O(g(n))itt g(rn) €(f(n))

It f(n) € O(g (n)) and g(n) € O(h(n)) , then f(n) € O(h(n))

Note similarity with a <b

I£ £;(n) O(g,(m)) and fy() € O(g,(m)) , then
fi(n) + fi() € O(max{g,(n), £,(1)})

0

c>0

lim 7(72)/2(n) =
n—>00

n(n+1)/2 VS.

IL’Hopital’s rule: Iflim . f(n)=lim, . g(n)=oc and
the derivatives [, g exist, then

lim S lim J @)
i 2(n) nso & (1)

Enample; flegyulys. 72 ~ 2an)2 (n/e)”

Example: 2" vs. n!

All logarithmic functions log 7 belong to the same class
O(log n) no matter what the logarithm’s base a > 1 is

Allfpolynomials ofithe same degree & belong to the same class:
an*+a, n*'+ ...+ a, e O(n)

Exponential functions ¢” have different orders of growth for
ditferent a’s

order log n < order n? (a>0) < order a” < order n! < order n”

constant
logarithmic
linear
n-log-n
quadratic

cubic

exponential

factorial

General Plan for Analysis

Decide on parameter » indicating input size

Identity algorithm’s basic operation

Determine worst, average, and best cases for input of size n

Set up a sum for the number of times the basic operation is
executed

Simplify the sum using standard formulas and rules (see
Appendix A)

Y =11+l =u-1+1
In particular, >, _._1=n-1+1=n c O(n)

Yicicy i = 1+2+...4n = n(n+1)/2 = n*2 € O(n?)

S 2= 124224, . 402 = n(nH1)2n+1)/6 ~ n¥/3 € O@)

Zocicy @ =1+a +...+a" =(a@*'-1)/(a-1) for any a = 1
In particular, X, 2/ =20+ 21+, .+ 27 =271 -1 € ©@(2")

2(a;£b;) = Xa;=2b; Xca; = cxa; X0 = X, 02 o 0

ALGORITHM MaxElement(A[0..n — 1])

//Determines the value of the largest element in a given array
/[Input: An array A[0..n — 1] of real numbers

//Output: The value of the largest element in A

maxval < A[Q]

fori < 1ton —1do

if Ali] > maxval
maxval < Ali]
return maxval

ALGORITHM UniqueElements(A[0..n — 1])

//Determines whether all the elements in a given array are distinct
//Input: An array A[0..n — 1]

//Output: Returns “true” if all the elements in A are distinct

/f and “false” otherwise

fori < Oton —2do

for j «<—i+1ton—1do
if A[i]= A[/] return false
return true

ALGORITHM MatrixMultiplication(A[0..n — 1, 0..n — 1], B[0..n — 1, 0..n — 1])

//Multiplies two n-by-n matrices by the definition-based algorithm
//Input: Two n-by-n matrices A and B
//Output: Matrix C = AB
fori < Oton —1do
forj «<0ton—1do
Cli, j] < 0.0

fork < 0QOton 1do
Cli, j] < Cli. j]1+ Ali, k] x Bk, J]
return C

Algorithm GaussianElimination(A]0..n-1,0..72])

//Implements Gaussian elimination of an 7-by-(7+1) matrix A

fori< Oton-2do
forj< i+ 1ton-1do
for k< iton do

AljJdl <= Al - Aliife] = Al i /Al]

Find the efficiency class and a constant factor improvement.

ALGORITHM Binary(n)
/[Input: A positive decimal integer n
//Output: The number of binary digits in n’s binary representation
count <1
while 7 > 1 do
count < count + 1

n<|n/2|
return count

Decide on a parameter indicating an mmput’s' size.
Identify the algorithm’s basic operation.

Check whether the number of times the basic op. is executed
may vary on different inputs of the same size. (If it may, the
worst, average, and best cases must be investigated
separately.)

Set up a recurrence relation with an appropriate initial
condition expressing the number: of times the basic op. is
executed.

Solve the recurrence (ox, at the very least, establish its
solution’s order of growth) by backward substitutions or
another method.

ALGORITHM F(n)

//Computes n! recursively
//Input: A nonnegative integer n
//Output: The value of n!

if » =0 return 1

elsereturn F(n — 1) xn

M) = Mi(r-1) + 1, M(0) =0

Recurrence for number of moves:

M(n) = 2M(n-1) + 1, M) =1

ALGORITHM BinRec(n)

/[Input: A positive decimal integer n
//Output: The number of binary digits in n’s binary representation
if n = 1return 1

else return BinRec(|n/2]) + 1

The Fibonacci numbers:
0,1,1,2,3,5,8,13, 21, ...

The Fibonacci recurrence:
K(n) = E(n-1) + K(n-2)
F(0)=0
F1)=1

General 2" order linear homogeneous recurrence with

constant coefficients:
aX(n) + bX(n-1) + cX(n-2) =0

Set up the characteristic equation (quadratic)
ar* +br+c=0

Solve to obtain roots r; and r,

General solution to the recurrence

if », and r, are two distinct real roots: X(n) = ar,”+ Br,"

if r,=r,=r are two equal real roots: X(n) = ar"+ Bnr"

Particular solution can be found by using initial conditions

F(n) = F(n-1) + K(n-2) or K(n)-FK(n-1)-E(@®m-2)=10

Characteristic equation:
Roots of the characteristic equation:
General solution to the recurrence:

Particular solution for F(0) =0, F(1)=1:

Definition-based recursive algorithm

Nonrecursive definition-based algorithm

Hxplicit formula algorithm

ILogarithmic algorithm based on formula:

Fn-1) F@) _ 01 "
F(n) F(n+1) 1 1

for n=1, assuming an efficient way of computing matrix powers.

