~Algorithm Design Methods
L @

» Greedy method.
 Divide and conquer.

» Dynamic Programming.
 Backtracking.

 Branch and bound.

Some Methods Not Covered

Linear Programming.
Integer Programming.
Simulated Annealing.
Neural Networks.
Genetic Algorithms.
Tabu Search.

Optimization Problem

A problem in which some function (called the
optimization or objective function) is to be
optimized (usually minimized or
maximized) subject to some constraints.

Machine Scheduling

Find a schedule that minimizes the finish time.
 optimization function ... finish time

e constraints

= each job is scheduled continuously on a single machine
for an amount of time equal to its processing requirement

= N0 machine processes more than one job at a time

Bin Packing

Pack items into bins using the fewest number of
bins.
 optimization function ... number of bins

e constraints
= each item Is packed into a single bin
= the capacity of no bin is exceeded

Min Cost Spanning Tree

Find a spanning tree that has minimum cost.
 optimization function ... sum of edge costs

e constraints
= must select n-1edges of the given n vertex graph
= the selected edges must form a tree

Feasible And Optimal Solutions

A feasible solution Is a solution that satisfies
the constraints.

An optimal solution Is a feasible solution that
optimizes the objective/optimization
function.

Greedy Method

Solve problem by making a sequence of
decisions.

Decisions are made one by one In some
order.

Each decision Is made using a greedy
criterion.

A decision, once made, Is (usually) not
changed later.

Machine Scheduling

LPT Scheduling.

 Schedule jobs one by one and in decreasing order
of processing time.

 Each job is scheduled on the machine on which it
finishes earliest.

 Scheduling decisions are made serially using a
greedy criterion (minimize finish time of this job).

« LPT scheduling Is an application of the greedy
method.

LPT Schedule

LPT rule does not guarantee minimum finish
time schedules.

e (LPT Finish Time)/(Minimum Finish Time) <=4/3 - 1/(3m)

where m I1s number of machines
Minimum finish time scheduling i1s NP-hard.
In this case, the greedy method does not work.

The greedy method does, however, give us a
good heuristic for machine scheduling.

Container Loading

Ship has capacity c.

m containers are available for loading.
Weight of container 1 1s w;.

Each weight Is a positive number.
Sum of container weights > c.

Load as many containers as Is possible
without sinking the ship.

Greedy Solution

 Load containers in increasing order of

welght until we get to a container that
doesn’t fit.

 Does this greedy algorithm always load the
maximum number of containers?

 Yes. May be proved using a proof by
Induction (see text).

Container Loading With 2 Ships

mm O80000MOSO0 OMO0O0O0O09SOTFOD
PO OOMOSOO0O0 OSSO0 FOIOOD

Can all containers be loaded into 2 ships whose
capacity Is c (each)?

e Same as bin packing with 2 bins.
= Are 2 bins sufficient for all items?

« Same as machine scheduling with 2 machines.

= Can all jobs be completed by 2 machines in c time
units?

 NP-hard.

0/1 Knapsack Problem

0/1 Knapsack Problem -

Hiker wishes to take n items on a trip.

The weight of item 1 is w;.

The items are to be carried in a knapsack whose
welght capacity Is c.

When sum of item weights <= c, all n items can
be carried in the knapsack.

When sum of item weights > ¢, some items must
be left behind.

Which items should be taken/left?

0/1 Knapsack Problem -

 Hiker assigns a profit/value p; to item I.
 All weights and profits are positive numbers.
e Hiker wants to select a subset of the n items to take.

= The weight of the subset should not exceed the
capacity of the knapsack. (constraint)

= Cannot select a fraction of an item. (constraint)

= The profit/value of the subset is the sum of the
profits of the selected items. (optimization function)

= The profit/value of the selected subset should be
maximum. (optimization criterion)

0/1 Knapsack Problem

Let x; =1 when item i is selected and let x; = 0
when item i is not selected.

n
maximize 2— Pi %

N
subjectto 2— WiX<=¢C

and x;= 0 or 1 for all |

Greedy Attempt 1

Be greedy on capacity utilization.
= Select items in increasing order of weight.

n=2,c=7

w = [3, 6]

p=[2, 10]

only item 1 is selected

profit (value) of selection Is 2
not best selection!

Greedy Attempt 2

Be greedy on profit earned.
= Select items in decreasing order of profit.

n=3,c=7/

w=1[7/,3, 2]

p = [10, 8§, 6]

only item 1 is selected

profit (value) of selection is 10
not best selection!

Greedy Attempt 3

Be greedy on profit density (p/w).
= Select items in decreasing order of profit density.

n=2,c=7

w =11, 7]

p = [10, 20]

only item 1 is selected

profit (value) of selection is 10
not best selection!

Greedy Attempt 3

Be greedy on profit density (p/w).

= \Works when selecting a fraction of an item is
permitted

= Select items in decreasing order of profit density, If
next item doesn’t fit take a fraction so as to fill

knapsack.
n=2,c=7/
w =11, 7]
p = [10, 20]

item 1 and 6/7 of item 2 are selected

0/1 Knapsack Greedy Heuristics

Select a subset with <= k 1tems.

If the weight of this subset is > c, discard
the subset.

If the subset weight is <= c, fill as much of
the remaining capacity as possible by being
greedy on profit density.

Try all subsets with <= k items and select
the one that yields maximum profit.

0/1 Knapsack Greedy Heuristics

* (best value - greedy value)/(best value) <=
1/(k+1)

0% 1% 5% 10% 25%

239 390 528 583 $10]0

360 D27 598 600

483 581 600

Number of solutions (out of 600) within X% of best.

0/1 Knapsack Greedy Heuristics

First sort into decreasing order of profit density.
There are O(nk) subsets with at most k items.
Trying a subset takes O(n) time.

Total time is O(n“*1) when k > 0.

(best value - greedy value)/(best value) <=
1/(k+1)

