
V. Balasubramanian

Greedy Approach

The idea

V. Balasubramanian2

Ebenezer Scrooge’s approach-Ebenezer Scrooge is the
principal character in Charles Dickens' 1843 novel, A Christmas Carol.

Grab data items in sequence, each time taking the
“best” one without regard for the choices made
before or in the future
Often used to solve optimization problems
Must determine that the globally optimal solution can
be obtained by a sequence of locally optimal solution

Greedy Method
SolType Greedy(Type a[], int n)
// a[1:n] contains the n input
{

SolType solution = Empty; // Initialise the solution.
For (int i =1; i <=n; i++) {

Type x = Select (a);
If (Feasible (Solution, x)

Solution = Union (Solution, x);
} // for loop
Return solution;

}

An example:
Making
changes
Quarter 25p
Dime =10p
Nickel = 5p
Penny = 1p
36 Paise

V. Balasubramanian4

The algorithm

5

while (there are more coins and the instance is not solved){

grab the largest remaining coin;
// selection procedure

If (adding the coin makes the change exceed the amount owed)
reject the coin; // feasibility check

else
add the coin to the change;

If (the total value of the change equals the amount owed)
// solution check

the instance is solved;
}

When the greedy
approach does not

work

Quarter 25p
d2=12p
Dime =10p
Nickel = 5p
Penny = 1p

6

Example 3
D1= 25, d2 = 10, d3 = 5, d4=1
N = 67
First D1 is chosen, second D1 is chosen
Third D1 exceeds N, hence choose D2, then D3, and 2
D4.

Basic components in Greedy
approach

8

A selection procedure chooses the next item to add to the
set. The selection is performed according to a greedy
criterion that satisfies some locally optimal consideration at
the time.

A feasibility check determines if the new set is feasible by
checking whether it is possible to complete this set in such a
way as to give a solution to the instance.

A solution check determines whether the new set constitutes
a solution to the instance.

Machine Scheduling
We have n tasks and an infinite supply of machines on
which these tasks will be performed.

Task has a start time si & finish time fi, si < fi
[si , fi] processing interval

Feasible task-to-machine assignment is an assignment in
which no machine is assigned two overlapping tasks.
Optimal assignment is a feasible assignments that utilises
the fewest number of machines.

Example

851011772Finish

6179430Start

gFEDCBATask

Task = 7, simple solution is use 7 machines, but we
need to find optimal solution

Greedy solution
Assign task in stages, sort the task in non-decreasing start
time.
Call a machine old, if a task is assigned to it.
If a machine is not old, it is new.
If an old machine becomes available by the start time of
the task to be assigned, assign the task to this machine, if
not assign it to a new machine.

solution
Stage 1: No old machines: so task a is assigned to M1, it
will be busy up to time 2.
Stage 2: task f (task in increasing order of start time), is
considered, since M1 is busy, assign it to M2.
Stage 3: task b is considered, M1 is free, so assign it to
M1.
Stage 4: task c is considered, M1(fb=7) & M2(ff=5) are
busy, assign it to M3.
Stage 5: task g, M2 is available, assign task g.
Stage 6: task e, M1, M3 is free, assign to M1.
Stage 7: task d, M2, M3 is free, assign to M2.

Activity-Selection
Formally:

Given a set S of n activities
si = start time of activity i
fi = finish time of activity i
Find max-size subset A of compatible activities

Assume (wlog) that f1 ≤ f2 ≤ … ≤ fn

1
2

3
4

5

6

Algorithm
So actual algorithm is simple:

Sort the activities by finish time
Schedule the first activity
Then schedule the next activity in sorted list which starts after
previous activity finishes
Repeat until no more activities

Complexity:
O(n log n) for sorting the tasks, heap sort can be used.

Container loading
A large ship is to be loaded with cargo.
Cargo is containerized. All containers are of same size.
Different containers may have different weights.
Let wi is the weight of ith container, 1§ i § n.
Cargo capacity of the ship is c.
Problem is to load the ship with maximum number of
containers.

Container loading
Let xi is the variable whose value can be either 0 or 1.
If xi =0, container is not loaded. If 1, then container is loaded.

cxw i
n

i
i ≤∑

=1
{ } .1,1,0 nixi ≤≤∈

Every set of Xi that satisfies the constraints is a feasible
solution.

utionoptimalsolx
n

i
i =∑

=1

Contd..
Ship is loaded in stages.
As each stage we need to select a container to load.
Use greedy criterion: from the remaining containers,
select the one with least weight. This order of selection
will keep the total weight of the selected containers
minimum, and hence maximum containers can be loaded.

Example
N =8, [w1…..w8] = [100, 200,50,90,150,50,20,80], c=400
The containers considered for loading are in increasing order of weight.
Containers considered are 7,3,6,8,4,1,5,2.
Containers 7,3,6,8,4,1 together weigh 390 units and are loaded.
Remaining 10 unit is inadequate to load container 5 & 2.
[x1….x8] = [1,0,1,1,0,1,1,1] and

6
1

=∑
=

n

i
ix

Contd..
Complexity O(n log n) for sorting the weights in
ascending order
Remainder of the algorithm takes O(n).
Overall complexity is O(n log n)

knapsack problem
The famous knapsack problem:

A thief breaks into a museum. Fabulous paintings, sculptures,
and jewels are everywhere. The thief has a good eye for the
value of these objects, and knows that each will fetch hundreds
or thousands of dollars on the clandestine art collector’s
market. But, the thief has only brought a single knapsack to
the scene of the robbery, and can take away only what he can
carry. What items should the thief take to maximize the haul?

Contd…
More formally, the 0-1 knapsack problem:

The thief must choose among n items, where the ith item
worth vi dollars and weighs wi pounds
Carrying at most W pounds, maximize value

Note: assume vi, wi, and W are all integers
“0-1” b/c each item must be taken or left in entirety

A variation, the fractional knapsack problem:
Thief can take fractions of items
Think of items in 0-1 problem as gold ingots, in fractional
problem as buckets of gold dust

Knapsack problem
We have n objects and a knapsack or bag.
Object i has a weight wi, and the knapsack has a capacity m.
If a fraction xi, 0§ xi§ 1, of i is placed into knapsack, then a profit
of pixi is earned.
Objective is maximise the total profit earned.
Since capacity is m,

Maximise

ni
x

mxw

xp

i

i
n

i
i

i
n

i
i

≤≤
≤≤

≤∑

∑

=

=

1
,10

1

1

solution
Feasible solution is any set (x1,….xn) satisfying second
equation.
Optimal solution is a feasible solution for which equ 1 is
maximised.

Example
Consider no of objects n =3, knapsack capacity m =20,
profit of the objects is (p1, p2, p3) = (25,24,15), and
weight of the object (w1, w2, w3) = (18,15,10).
Feasible solutions are

(x1,x2,x3) wixi pixi
½,1/3,1/4 16.5 24.25
1,2/15,0 20 18.2
0,2/3,1 20 31
0,1,1/2 20 31.5. among 4 feasible solution, last
one is optimal.

Lemma
In the case the sum of all weights is § m, then xi=1, 1 §
i§n is an optimal solution.
Lemma 2: let us assume that the sum of weights exceeds
m, then xi’s cannot be 1.
All optimal solutions will fill the knapsack exactly.

Contd…
1. we try to fill the knapsack by including object of higher
profit.
If an object under consideration does not fit , then a
fraction is chosen.
For example, if we are left with 2 units of space and 2
objects with (pi =4, wi=4) & (pj=3,wj=2). It is better to
include j than half of i.

Contd…
Consider no of objects n =3, knapsack capacity m =20,
profit of the objects is (p1, p2, p3) = (25,24,15), and
weight of the object (w1, w2, w3) = (18,15,10).
Sol:
Largest profit p1 is placed in knapsack. X1=1.
Object 2 is next largest profit, p2=24. w2=15, it does not
fit in knapsack, b/c total weight 18+15 exceeds 20.
So a fraction is chosen x2=2/15, profit =28.2.
It is not optimal solution.

Next strategy
Theorem: p1/w1 ¥ p2/w2¥ ….¥ pn/wn, then greedy
algorithm generates an optimal solution.
25/18, 24/15, 15/10 = 1.388, 1.6, 1.5
Choose p2 weight is 15, remaining 5 unit , choose 0.5
unit of p3.
(0,1,0.5)

Review: The Knapsack Problem
And Optimal Substructure

Both variations exhibit optimal substructure
To show this for the 0-1 problem, consider the most
valuable load weighing at most W pounds

If we remove item j from the load, what do we know about the
remaining load?
A: remainder must be the most valuable load weighing at most
W - wj that thief could take from museum, excluding item j

Solving The Knapsack Problem
The optimal solution to the fractional knapsack problem
can be found with a greedy algorithm

How?

The optimal solution to the 0-1 problem cannot be found
with the same greedy strategy

Greedy strategy: take in order of dollars/pound
Example: 3 items weighing 10, 20, and 30 pounds, knapsack can
hold 50 pounds

Suppose item 2 is worth $100. Assign values to the other items so that the
greedy strategy will fail

The Knapsack Problem:
Greedy Vs. Dynamic

The fractional problem can be solved greedily
The 0-1 problem cannot be solved with a greedy
approach

As you have seen, however, it can be solved with dynamic
programming

The greedy approach versus dynamic
programming: The knapsack problem

32

Efficiency:
Greedy approach is often simpler and more efficient

Proof:
Dynamic programming: principle of optimality
Greedy approach: a proof that is usually more complex

A greedy approach to the 0-1 knapsack
problem

33

The 0-1knapsack problem
Let

S = {item1, item2, …, itemn}
wi = weight of itemi

pi = profit of itemi

W = maximum weight the knapsack can hold

Determine a subset A and S such that

Brute force algorithm: O(2n) - there are 2n sub-sets

∑∑
∈∈

≤
Aitem

Wtosubjectimizedis
item ii

wp i
A

i
max

Greedy approach fails

34

Approach 1: steal the items with the largest profit first
Steal the lightest items first
Steal the items with the largest profit per unit weight first

Greedy approach fails (cont’d)

35

A greedy approach to the fractional
knapsack problem

36

Total profit in the previous example
$50 + $140 + (5/10)($60) = $220

A dynamic programming approach
to the 0-1 knapsack problem

37

The algorithm

The maximum profit = P[n][W]
Using array P[0-n][0-W]
Set P[0][W] and P[i][0] to 0

Time complexity:
The number of entries computed is nW Θ(nW)

A refinement of the dynamic programming
algorithm for the 0-1 knapsack problem

38

Going back to determine what entries are needed. Because

Entries needed in the (n-1)st row are P[n-1][W] and P[n-
1][W-wn]
In general, we can use the fact that P[i][w] is computed
from P[i-1][w] and P[i-1][w-wi]
Until n = 1 or w ≤ 0

An example

39

W = 30

Time complexity

40

We compute at most 2i entries in the (n-i)th row.
The total number of entries computed is at most
1 + 2 + 22 + …+ 2n-1 = 2n – 1 = Θ(2n)

