
Greedy Approach
Minimum Spanning Tree Problem

R. Kanchana

1

R. Kanchana
Dept of CSE

SSNCE

15th Dec 2014

Greedy - A simple example

• Problem: Pick k numbers out of n numbers such
that the sum of these k numbers is the largest.

• Algorithm:

FOR i = 1 to kFOR i = 1 to k

pick out the largest number and

delete this number from the input.

ENDFOR

2

The greedy method
• Suppose that a problem can be solved by a

sequence of decisions.

• Greedy algorithms build up a solution piece
by piece, always choosing the next piece that
offers the most obvious and immediate

3

benefit.

• Only a few optimization problems can be
solved by the greedy method. (Eg. Scrabble,
MST)

• Chess – Greedy does not help

Shortest path Problem

• Problem: Find a shortest path from v0 to v3.

• The greedy method can solve this problem.

• The shortest path: 1 + 2 + 4 = 7.

4

Greedy Approach

X = { } (edges picked so far)

repeat until |X| = |V| -1

pick a set S from V for which X has no edges between

S and V - S

5

S and V - S

let e ϵ E be the minimum-weight edge between S and

V - S

X = X U {e}

Spanning Trees
• Let G=(V, E) be at undirected connected graph.

• A subgraph t=(V, E’) of G is a spanning tree of G iff t is a tree.

• Example

• Applications

– To network a set of computers with minimum cost

– Obtaining an independent set of circuit equations for an

electric network

Spanning trees

6

Minimum -cost Spanning Trees
Input: An undirected graph G = (V,E); edge weights we.

Output: A tree T = (V,E’), with E’ is a subset of E, that minimizes

weight(T) = ∑ we e ϵ E’

There could be several MSTs for a given graph!
1

28
1

2

76 3

5
4

10

28

14 16

25 12

2

76 3

5
4

10
14 16

25

22

12
24

22

18

7

Kruskal’s MST Algorithm
• Start with an empty graph and then select edges

from E according to the following rule.

Repeatedly add the next lightest edge that

doesnot produce a cycledoesnot produce a cycle

8

Kruskal’s Algorithm
• Start with an empty graph and then attempt to add

edges in increasing order of weight

BC; CD; BD; CF; DF; EF; AD; AB; CE; AC:

• The first two succeed, but the third, BD, would produce

a cycle if added. So ignore it and move along.

• The final result is a tree with cost 14, the minimum The final result is a tree with cost 14, the minimum

possible.

A C E

B D F

5

6

4

5

2

2 4

4
1 3

A C E

B D F

4
2 4

1 3

9

Kruskal’s Algorithm – Cut Property
• The correctness of Kruskal's method follows from cut

property

•A cut is any partition of the vertices into two groups, S and

V-S.

•Suppose edges X are part of a minimum spanning tree of

G = (V,E). Pick any subset of nodes S for which X does not G = (V,E). Pick any subset of nodes S for which X does not

cross between S and V – S.

•Let e be the lightest edge across this partition. Then X U{e}

is part of some MST

•Cut property ensures that it is always safe to add the lightest

edge across any cut (between a vertex in S and one in V-S),

provided X has no edges across the cut)

10

Kruskal’s Algorithm – Cut Property
A C E

B D F

2

1 3

2

1 4

1
2 3

A C E

2

1

1

3
A C E

2

1

1
MST T

A C E

B D F

2

1

1

B D F

2 1

1
B D F

2 1
Edges X:

MST T

MST T’

A C E

B D F

2

1

1

1

3
Cut

S V-S 11

Kruskal’s Algorithm - General
X = { };

while ((X has fewer than n-1 edges) && E <> { })

{

choose an edge (v, w) from E of lowest cost

delete (v, w) from E;delete (v, w) from E;

if (v, w) dose not create a cycle in X

add (v, w) to X

else discard (v, w)

}

12

Kruskal’s Algorithm
procedure kruskal(G,w)

Input: A connected undirected graph G = (V,E) with edge

weights we

Output: A minimum spanning tree defined by the edges X

for all u ϵ V
makeset(u)makeset(u)

X = { }; mincost = 0

Sort the edges E by weight

for all edges {u,v} ϵ E, in increasing order of weight
if find(u) <> find(v)

add edge {u,v}to X

mincost = mincost + wuv

union(u, v)
13

Kruskal’s Algorithm
•At each stage, the algorithm chooses an edge to add to its

current partial solution.

•It tests each candidate edge uv to see whether the

endpoints u and v lie in different components; otherwise

the edge produces a cycle.

•Once an edge is chosen, the corresponding components Once an edge is chosen, the corresponding components

need to be merged.

•What kind of data structure supports such operations?

•Can model the algorithm's state as a collection of disjoint

sets, each of which contains the nodes of a particular

component.

•Initially each node is in a component by itself

14

Disjoint Set
One way to store a set is as a directed tree.

Nodes of the tree are elements of the set, arranged in no

particular order, and each has parent pointers that

eventually lead up to the root of the tree.

This root element is distinguished from the other elements

by the fact that its parent pointer is a self-loop.by the fact that its parent pointer is a self-loop.

Set {B,E} set {A,C,D,F,G,H}

E

B

H

C D

AG

F

15

Disjoint Set Operations
makeset(x): create a singleton set containing just x.

procedure makeset(x)

x.parent = x

rank(x) = 0 // height of the subtree hanging from node x

To repeatedly test pairs of nodes to see if they belong to To repeatedly test pairs of nodes to see if they belong to

the same set.

find(x): to which set does x belong?

function find(x)

while x <> x.parent

x = x.parent

return x

16

Disjoint Set Operations
whenever an edge is added, two components are merged

union(x, y): merge the sets containing x and y.

procedure union(x, y)

rootx = find(x)

rooty = find(y)

if rootx = rootyif rootx = rooty

return

if rank(rootx) > rank(rooty)

(rooty).parent = rootx

else (rootx).parent = rooty

if rank(rootx) = rank(rooty)

rank(rooty) = rank(rooty) + 1

17

Disjoint Set Operations
After makeset(A),makeset(B),…,makeset(G)

A0 B0

C0

D0 E0 F0 G0

After union(A,D), union(B,E),union(C,F)

D1

A0

E1

B0

F1
G0

After union(B,G) C0

After union(C.G),union(E,A)

A0 B0

D2

A0
E1

B0

C0

F1

G0

D2

A0
E1

B0 C0

F1

G0

After union(B,G)

18

Kruskal’s Algorithm
• Time Complexity

• It uses

– |V| makeset

– O(|E| log |V|) for sorting the edges (log |E|≈ log
|V|)

– O(|E| log |V|) for the union and find operations that – O(|E| log |V|) for the union and find operations that

dominate the rest of the algorithm. (2 * |E| find

– |V| - 1 union operations)

• Hence O(|E| log |V|)

19

Prim’s MST Algorithm
• Alternative to Kruskal’s algorithm

• The intermediate set of edges X always forms a subtree,

and S is chosen to be the set of this tree's vertices.

• On each iteration, the subtree defined by X grows by one

edge, namely, the lightest edge between a vertex in S and a

vertex outside S vertex outside S

• S grows to include the vertex v (not ϵ S) of smallest cost

• cost(v) = min w(u, v) u ϵ s
• It differs from Dijkstra’s algorithm in the key values by

which the priority queue is ordered.

• In Prim's algorithm, the value of a node is the weight of

the lightest incoming edge from set S, whereas in

Dijkstra's it is the length of an entire path to that node

from the starting point.

20

Prim ’s Algorithm
procedure prim(G, w)

Input: A connected undirected graph G = (V,E) with edge weights we

Output: A minimum spanning tree defined by the array prev

for all u ϵ V :

cost(u) = ∞
prev(u) = NIL

Pick any initial node u0

cost(u0) = 0cost(u0) = 0

H = makequeue(V) //priority queue, using cost-values as keys

while H is not empty

v = deletemin(H)

for each {v, z} ϵ H
if cost(z) > w(v, z)

cost(z) = w(v, z)

prev(z) = v

decreasekey(H, z)
21

Prim ’s Algorithm
Trace

A C E

B D F

5

6

4

5

2

2 4

4
1 3

A C E

B D F

4
4

1 3

2

Set S A B C D E FSet S A B C D E F

{} 0/nil ∞/nil ∞/nil ∞/nil ∞/nil ∞/nil

A 5/A 6/A 4/A ∞/nil ∞/nil

A,D 2/D 2/D ∞/nil 4/D

A,D,B 1/B ∞/nil 4/D

A,D,B,C 5/C 3/C

A,D,B,C,F 4/F

22

Prim ’s Algorithm
Time complexity

• Since makequeue takes at most |V| insert operations,

a total of |V| deletemin are required and |V|+ |E|

insert/decreasekey operations.

• The time needed for these varies by implementation;

• For instance, a binary heap gives an overall running

time of O((|V| + |E|) log |V|)

23

