
Greedy Technique

Constructs a solution to an optimization problem piece by

piece through a sequence of choices that are:

 feasible

 locally optimal

 irrevocable

For some problems, yields an optimal solution for every instance.

For most, does not but can be useful for fast approximations.

Applications of the Greedy Strategy

 Optimal solutions:

• change making for “normal” coin denominations

• minimum spanning tree (MST)

• single-source shortest paths

• simple scheduling problems

• Huffman codes

 Approximations:

• traveling salesman problem (TSP)

• knapsack problem

• other combinatorial optimization problems

Change-Making Problem

Given unlimited amounts of coins of denominations d1 > … > dm ,

give change for amount n with the least number of coins

Example: d1 = 25c, d2 =10c, d3 = 5c, d4 = 1c and n = 48c

Greedy solution:

Greedy solution is

 optimal for any amount and “normal’’ set of denominations

 may not be optimal for arbitrary coin denominations

Minimum Spanning Tree (MST)

 Spanning tree of a connected graph G: a connected acyclic

subgraph of G that includes all of G’s vertices

 Minimum spanning tree of a weighted, connected graph G:

a spanning tree of G of minimum total weight

Example:

c

d
b

a

6

2

4

3

1

MST

 Robert Prim rediscovered the algorithm published 27 years

earlier by the Czech mathematician Vojtech Jarnik in a

Czech journal.

 DEFINITION Aspanning tree of an undirected connected

graph is its connected acyclic subgraph (i.e., a tree) that

contains all the vertices of the graph. If such a graph has

weights assigned to its edges, a minimum spanning tree is

its spanning tree of the smallest weight, where the weight of

a tree is defined as the sum of the weights on all its edges.

The minimum spanning tree problem is the problem of

finding a minimum spanning tree for a given weighted

connected graph.

Prim’s MST algorithm

 Start with tree T1 consisting of one (any) vertex and “grow”

tree one vertex at a time to produce MST through a series of

expanding subtrees T1, T2, …, Tn

 On each iteration, construct Ti+1 from Ti by adding vertex

not in Ti that is closest to those already in Ti (this is a

“greedy” step!)

 Stop when all vertices are included

Example

c

d
b

a

4

2

6
1

3

Notes about Prim’s algorithm

 Proof by induction that this construction actually yields MST

 Needs priority queue for locating closest fringe vertex

 Efficiency

• O(n2) for weight matrix representation of graph and array

implementation of priority queue

• O(m log n) for adjacency list representation of graph with

n vertices and m edges and min-heap implementation of

priority queue

Another greedy algorithm for MST: Kruskal’s

 Sort the edges in nondecreasing order of lengths

 “Grow” tree one edge at a time to produce MST through a

series of expanding forests F1, F2, …, Fn-1

 On each iteration, add the next edge on the sorted list

unless this would create a cycle. (If it would, skip the edge.)

