
Greedy Technique

Constructs a solution to an optimization problem piece by

piece through a sequence of choices that are:

 feasible

 locally optimal

 irrevocable

For some problems, yields an optimal solution for every instance.

For most, does not but can be useful for fast approximations.

Applications of the Greedy Strategy

 Optimal solutions:

• change making for “normal” coin denominations

• minimum spanning tree (MST)

• single-source shortest paths

• simple scheduling problems

• Huffman codes

 Approximations:

• traveling salesman problem (TSP)

• knapsack problem

• other combinatorial optimization problems

Change-Making Problem

Given unlimited amounts of coins of denominations d1 > … > dm ,

give change for amount n with the least number of coins

Example: d1 = 25c, d2 =10c, d3 = 5c, d4 = 1c and n = 48c

Greedy solution:

Greedy solution is

 optimal for any amount and “normal’’ set of denominations

 may not be optimal for arbitrary coin denominations

Minimum Spanning Tree (MST)

 Spanning tree of a connected graph G: a connected acyclic

subgraph of G that includes all of G’s vertices

 Minimum spanning tree of a weighted, connected graph G:

a spanning tree of G of minimum total weight

Example:

c

d
b

a

6

2

4

3

1

MST

 Robert Prim rediscovered the algorithm published 27 years

earlier by the Czech mathematician Vojtech Jarnik in a

Czech journal.

 DEFINITION Aspanning tree of an undirected connected

graph is its connected acyclic subgraph (i.e., a tree) that

contains all the vertices of the graph. If such a graph has

weights assigned to its edges, a minimum spanning tree is

its spanning tree of the smallest weight, where the weight of

a tree is defined as the sum of the weights on all its edges.

The minimum spanning tree problem is the problem of

finding a minimum spanning tree for a given weighted

connected graph.

Prim’s MST algorithm

 Start with tree T1 consisting of one (any) vertex and “grow”

tree one vertex at a time to produce MST through a series of

expanding subtrees T1, T2, …, Tn

 On each iteration, construct Ti+1 from Ti by adding vertex

not in Ti that is closest to those already in Ti (this is a

“greedy” step!)

 Stop when all vertices are included

Example

c

d
b

a

4

2

6
1

3

Notes about Prim’s algorithm

 Proof by induction that this construction actually yields MST

 Needs priority queue for locating closest fringe vertex

 Efficiency

• O(n2) for weight matrix representation of graph and array

implementation of priority queue

• O(m log n) for adjacency list representation of graph with

n vertices and m edges and min-heap implementation of

priority queue

Another greedy algorithm for MST: Kruskal’s

 Sort the edges in nondecreasing order of lengths

 “Grow” tree one edge at a time to produce MST through a

series of expanding forests F1, F2, …, Fn-1

 On each iteration, add the next edge on the sorted list

unless this would create a cycle. (If it would, skip the edge.)

