Greedy Technique

Constructs a solution to an *optimization problem* piece by piece through a sequence of choices that are:

- **S** feasible
- **&** locally optimal
- **S** irrevocable

For some problems, yields an optimal solution for every instance. For most, does not but can be useful for fast approximations.

Applications of the Greedy Strategy

Q Optimal solutions:

- change making for "normal" coin denominations
- minimum spanning tree (MST)
- single-source shortest paths
- simple scheduling problems
- Huffman codes

& Approximations:

- traveling salesman problem (TSP)
- knapsack problem
- other combinatorial optimization problems

Change-Making Problem

Given unlimited amounts of coins of denominations $d_1 > ... > d_m$, give change for amount *n* with the least number of coins

Example: $d_1 = 25c$, $d_2 = 10c$, $d_3 = 5c$, $d_4 = 1c$ and n = 48c

Greedy solution:

Greedy solution is

Q optimal for any amount and "normal" set of denominations

Q may not be optimal for arbitrary coin denominations

Minimum Spanning Tree (MST)

- **&** <u>Spanning tree</u> of a connected graph G: a connected acyclic subgraph of G that includes all of G's vertices
- **Q** <u>Minimum spanning tree</u> of a weighted, connected graph G: a spanning tree of G of minimum total weight

Example:

Q Robert Prim rediscovered the algorithm published 27 years earlier by the Czech mathematician Vojtech Jarnik in a Czech journal. **Q** DEFINITION Aspanning tree of an undirected connected graph is its connected acyclic subgraph (i.e., a tree) that contains all the vertices of the graph. If such a graph has weights assigned to its edges, a minimum spanning tree is its spanning tree of the smallest weight, where the weight of a tree is defined as the sum of the weights on all its edges. The minimum spanning tree problem is the problem of finding a minimum spanning tree for a given weighted connected graph.

ALGORITHM Prim(G)

//Prim's algorithm for constructing a minimum spanning tree //Input: A weighted connected graph $G = \langle V, E \rangle$ //Output: E_T , the set of edges composing a minimum spanning tree of G $V_T \leftarrow \{v_0\}$ //the set of tree vertices can be initialized with any vertex $E_T \leftarrow \emptyset$ for $i \leftarrow 1$ to |V| - 1 do find a minimum-weight edge $e^* = (v^*, u^*)$ among all the edges (v, u)such that v is in V_T and u is in $V - V_T$ $V_T \leftarrow V_T \cup \{u^*\}$ $E_T \leftarrow E_T \cup \{e^*\}$ return E_T

Prim's MST algorithm

Start with tree T₁ consisting of one (any) vertex and "grow" tree one vertex at a time to produce MST through a series of expanding subtrees T₁, T₂, ..., T_n

Q On each iteration, construct T_{i+1} from T_i by adding vertex not in T_i that is closest to those already in T_i (this is a "greedy" step!)

Q Stop when all vertices are included

Tree vertices	Remaining vertices	Illustration
a(-, -)	$b(a, 3) c(-, \infty) d(-, \infty)$ e(a, 6) f(a, 5)	a b 1 c 6 d a b 1 c 6 d b c d
b(a, 3)	$c(b, 1) d(-, \infty) e(a, 6) f(b, 4)$	
c(b, 1)	d(c, 6) e(a, 6) f(b, 4)	a b 1 c 6 d

Ţ

Tree vertices	Priority queue of remaining vertices
a(-,-)	$b(a,5)$ $c(a,7)$ $d(a,\infty)$ $e(a,2)$
e(a,2)	b(e,3) $c(e,4)$ $d(e,5)$
b(e,3)	c(e,4) $d(e,5)$
c(e,4)	d(c,4)
d(c,4)	

The minimum spanning tree found by the algorithm comprises the edges ae, eb, ec, and cd.

Notes about Prim's algorithm

Q Proof by induction that this construction actually yields MST

Q Needs priority queue for locating closest fringe vertex

& Efficiency

- O(n²) for weight matrix representation of graph and array implementation of priority queue
- O(*m* log *n*) for adjacency list representation of graph with *n* vertices and *m* edges and min-heap implementation of priority queue

Another greedy algorithm for MST: Kruskal's

Q Sort the edges in nondecreasing order of lengths

Q "Grow" tree one edge at a time to produce MST through a series of expanding forests F₁, F₂, ..., F_{n-1}

On each iteration, add the next edge on the sorted list unless this would create a cycle. (If it would, skip the edge.)