Dynamic Programming

Presentation by V. Balasubramanian SSN College of Engineering

Dynamic Programming

- Dynamic Programming is a general algorithm design technique for solving problems defined by recurrences with overlapping subproblems
- Invented by American mathematician Richard Bellman in the 1950s to solve optimization problems and later assimilated by CS
- The term "dynamic programming" comes from control theory, and
- in this sense "programming" means the use of an array (table) in which a solution is constructed.

Dynamic Programming

- "Programming" here means "planning"
- Main idea:
	- set up a recurrence relating a solution to a larger instance to solutions of some smaller instances
- - solve smaller instances once
	- record solutions in a table
	- extract solution to the initial instance from that table

Permutations

- Suppose we have four balls marked A, B, C, and D in an urn or container, and two balls will be drawn
- AB & BA are different. $4(3) = 12$

Strategy

The steps in the development of a dynamic programming algorithm are as follows:

- Establish a recursive property that gives the solution to an instance of the $1.$ problem.
- $2.$ Solve an instance of the problem in a *bottom-up* fashion by solving smaller instances first.

Contd...

- if we have four balls and three are
- drawn, the first ball can be any one of four; once the first ball is drawn, the second ball can be any of three; and once the second ball is drawn, the third ball can be any of two.

•
$$
4.3.2 = 24
$$
.

Contd…

- In general, if we have n balls, and we are picking k of them,
- $(n)(n 1) \bullet \bullet \bullet (n k + 1).$
- If $k=n$, $-(n)(n - 1) \bullet \bullet \bullet (n - n + 1) = n!$.

•

Combinations

- A and B, A and C, A and D, B and C,B and D, C and D.
- 6 distinct outcomes.
- $4(3)/2 = 6$.
- 3 balls to be taken.
- $4(3)(2)/3! = 4$.

Contd...

• if there are n balls and k balls are drawn, then

$$
\frac{(n)(n-1)\cdots(n-k+1)}{k!}.
$$

$$
(n)(n-1)\cdots(n-k+1)=(n)(n-1)\cdots(n-k+1)\times\frac{(n-k)!}{(n-k)!}
$$

=
$$
\frac{n!}{(n-k)!},
$$

Contd…

- Binomial coefficients are coefficients of the binomial formula:
- $(a + b)^n = C(n, 0)a^n b^0 + \ldots$ $C(n,k)a^{n-k}b^{k} + ... + C(n,n)a^{0}b^{n}$
- Recurrence:
- $C(n,k) = C(n-1,k) + C(n-1,k-1)$ for $n > k > 0$
- $C(n,0) = 1$, $C(n,n) = 1$ for $n > = 0$

$$
(a + b)^n = \sum_{k=0}^n \frac{n!}{k!(n - k)!} a^k b^{n-k}.
$$

The **binomial theorem** provides a useful method for raising any binomial to a nonnegative integral power.

Consider the patterns formed by expanding $(x + y)^n$.

$$
(x + y)^0 = 1 \longleftarrow 1 \text{ term}
$$

\n
$$
(x + y)^1 = x + y \longleftarrow 2 \text{ terms}
$$

\n
$$
(x + y)^2 = x^2 + 2xy + y^2 \longleftarrow 3 \text{ terms}
$$

\n
$$
(x + y)^3 = x^3 + 3x^2y + 3xy^2 + y^3 \longleftarrow 4 \text{ terms}
$$

\n
$$
(x + y)^4 = x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4 \longleftarrow 5 \text{ terms}
$$

\n
$$
(x + y)^5 = x^5 + 5x^4y + 10x^3y^2 + 10x^2y^3 + 5xy^4 + y^5 \longleftarrow 6 \text{ terms}
$$

Notice that each expansion has $n + 1$ terms. **Example**: $(x + y)^{10}$ will have $10 + 1$, or 11 terms. Consider the patterns formed by expanding $(x + y)^n$.

$$
(x + y)0 = 1
$$

\n
$$
(x + y)1 = x + y
$$

\n
$$
(x + y)2 = x2 + 2xy + y2
$$

\n
$$
(x + y)3 = x3 + 3x2y + 3xy2 + y3
$$

\n
$$
(x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4
$$

\n
$$
(x + y)5 = x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5
$$

- 1. The exponents on *x* decrease from *n* to 0. The exponents on *y* increase from 0 to *n*.
- 2. Each term is of degree *n*. **Example**: The 5th term of $(x + y)^{10}$ is a term with x^6y^4 .

The coefficients of the binomial expansion are called **binomial coefficients**. The coefficients have symmetry.

$$
(x + y)5 = 1x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + 1y5
$$

The first and last coefficients are 1. The coefficients of the second and second to last terms

are equal to *n*.

Example: What are the last 2 terms of $(x + y)^{10}$? Since $n = 10$, the last two terms are $10xy^9 + 1y^{10}$.

The coefficient of $x^{n-r}y^r$ in the expansion of $(x + y)^n$ is written or ${}_{n}C_{r}$. So, the last two terms of $(x + y)^{10}$ can be expressed *n* $\binom{n}{r}$ as $_{10}C_9xy^9 + _{10}C_{10}y^{10}$ or as $\left(\frac{10}{9}\right)xy^9 + \left(\frac{10}{10}\right)y^{10}$. $\overline{}$ $\overline{}$ \int \setminus $\overline{}$ \mathbf{L} \setminus $\bigg($ 9 10 $\overline{}$ $\overline{}$ \int \setminus $\overline{}$ \mathbf{L} \setminus $\bigg($ 10 10

The triangular arrangement of numbers below is called **Pascal's Triangle**.

1 1 1 st row 1 2 1 2 nd row 1 3 3 1 3 rd row 1 4 6 4 1 4 th row 1 5 10 10 5 1 5 th row 0 th 1 row 6 + 4 = 10 1 + 2 = 3

Each number in the interior of the triangle is the sum of the two numbers immediately above it.

The numbers in the nth row of Pascal's Triangle are the binomial coefficients for $(x + y)^n$.

Contd...

Theorem 1. The binomial coefficients $B(n, k)$ defined by formula (1) satisfy

$$
(2) \qquad B(n,k) = B(n-1,k-1) + B(n-1,k), \qquad 1 \le k \le n-1.
$$

Together with the initial conditions $B(n,0) = B(n,n) = 1$ recursion (2) completely specifies the binomial coefficients.

1

Proof

Proof. Using equation (1) we obtain

$$
B(n-1, k-1) = \frac{(n-1)!}{(k-1)!(n-k)!} = \frac{(n-1)!}{(k-1)!(n-k-1)!} \frac{1}{n-k},
$$

$$
B(n-1, k) = \frac{(n-1)!}{k!(n-k-1)!} = \frac{(n-1)!}{(k-1)!(n-k-1)!} \frac{1}{k}.
$$

Proof

$$
B(n-1, k-1) + B(n-1, k) = \frac{(n-1)!}{(k-1)!(n-k-1)!} \left(\frac{1}{n-k} + \frac{1}{k}\right)
$$

=
$$
\frac{(n-1)!}{(k-1)!(n-k-1)!} \frac{n}{k(n-k)}
$$

=
$$
\frac{n!}{k!(n-k)!}
$$

=
$$
B(n, k).
$$

FIGURE 8.1 Table for computing the binomial coefficient $C(n, k)$ by the dynamic programming algorithm

Algorithm

ALGORITHM $Binomial(n, k)$

//Computes $C(n, k)$ by the dynamic programming algorithm //Input: A pair of nonnegative integers $n \ge k \ge 0$ //Output: The value of $C(n, k)$ for $i \leftarrow 0$ to *n* do for $j \leftarrow 0$ to min(i, k) do if $j = 0$ or $j = i$ $C[i, j] \leftarrow 1$ else $C[i, j]$ ← $C[i - 1, j - 1]$ + $C[i - 1, j]$ return $C[n, k]$

Analysis Addition is the operation

$$
A(n,k) = \sum_{i=1}^{k} \sum_{j=1}^{i-1} 1 + \sum_{i=k+1}^{n} \sum_{j=1}^{k} 1 = \sum_{i=1}^{k} (i-1) + \sum_{i=k+1}^{n} k
$$

=
$$
\frac{(k-1)k}{2} + k(n-k) \in \Theta(nk).
$$

$C(12,5)$

Use Excel for DEMO

Longest Common Subsequence

add notes

10:37 / 11:59

 $b - d$

• $C(I,j)$ = max $(c(i-1,j), c(I,j-1) + 1)$ $/0$

Gift collection

Gift collection

Matrix Chain Multiplication

$$
\begin{bmatrix} 1 & 2 & 3 \ 4 & 5 & 6 \end{bmatrix} \times \begin{bmatrix} 7 & 8 & 9 & 1 \ 2 & 3 & 4 & 5 \ 6 & 7 & 8 & 9 \end{bmatrix} = \begin{bmatrix} 29 & 35 & 41 & 38 \ 74 & 89 & 104 & 83 \end{bmatrix}
$$

In general, to multiply an $i \times j$ matrix times a $j \times k$ matrix, using the standard method, it is necessary to do

 $i \times j \times k$ elementary multiplications.

Example

$A \times B \times C \times D$ 20×2 2×30 30×12 12×8

5 different orders

 $A(B(CD))$ $30 \times 12 \times 8 + 2 \times 30 \times 8 + 20 \times 2 \times 8 = 3{,}680$ $(AB)(CD)$ $20 \times 2 \times 30 + 30 \times 12 \times 8 + 20 \times 30 \times 8 =$ 8,880 $A((BC)D)$ $2 \times 30 \times 12 + 2 \times 12 \times 8 + 20 \times 2 \times 8 =$ 1,232 $((AB)CD$ $20 \times 2 \times 30 + 20 \times 30 \times 12 + 20 \times 12 \times 8 = 10,320$ $(A(BC))D$ $2 \times 30 \times 12 + 20 \times 2 \times 12 + 20 \times 12 \times 8 = 3,120$

$$
A_1(A_2A_3 \cdots A_n)
$$

\n t_{n-1} different orders $t_n \ge 2^{n-2}$.

 $A_1 \times A_2 \times A_3 \times A_4 \times A_5 \times A_6$ 5×2 2×3 3×4 4×6 6×7 7×8 d_0 d_1 d_1 d_2 d_2 d_3 d_3 d_4 d_4 d_5 d_5 d_6

$M[1][6] = minimum(M[1][k] + M[k+1][6] + d_0d_kd_6).$ $1 \leq k \leq 5$

Recurrence equation

if $i < j$ $M[i][j] = minimum(M[i][k] + M[k+1][j] + d_{i-1}d_kd_j)$ $i \leq k \leq j-1$ $M[i][i] = 0.$

Compute diagonal 0:

 $M[i][i] = 0$ for $1 \le i \le 6$.

$$
M[1][2] = \min_{1 \le k \le 1} \min(M[1][k] + M[k+1][2] + d_0 d_k d_2)
$$

=
$$
M[1][1] + M[2][2] + d_0 d_1 d_2
$$

= 0 + 0 + 5 × 2 × 3 = 30

Compute diagonal 2:

$$
M[1][3] = \min_{1 \le k \le 2} \min\{M[1][k] + M[k+1][3] + d_0 d_k d_3\}
$$

= \min\{M[1][1] + M[2][3] + d_0 d_1 d_3,
M[1][2] + M[3][3] + d_0 d_2 d_3\}
= \min\{M[1][2] + M[3][3] + d_0 d_2 d_3\}
= \min\{M[1] + M[3][3] + d_0 d_2 d_3\}
= \min\{M[1] + M[3][3] + d_0 d_2 d_3\}
= \min\{M[1] + M[3][3] + d_0 d_2 d_3\}
= \frac{M[3]}{M[3]} + \frac{M[2]}{M[3]} + \frac{M[4]}{M[4]} + \frac{M[5]}{M[4]} + \frac{M[6]}{M[4]} + \frac{M[7]}{M[3]} + \frac{M[8]}{M[4]} + \frac{M[9]}{M[4]} + \frac{M[9]}{M[3]} + \frac{M[9]}{M[4]} + \frac{M[1]}{M[5]} + \frac{M[1]}{M[6]} + \frac{M[1]}{M[7]} +

$P(1,6)=1$, $P(2,6)=5$

 $A_1(A_2A_3A_4A_5A_6).$

 $(A_2A_3A_4A_5)A_6.$

 $A_1(((A_2A_3)A_4)A_5)A_6).$

P Matrix

