Dynamic Programming

Presentation by V. Balasubramanian SSN College of Engineering

Dynamic Programming

- Dynamic Programming is a general algorithm design technique for solving problems defined by recurrences with overlapping subproblems
- Invented by American mathematician Richard Bellman in the 1950s to solve optimization problems and later assimilated by CS

- The term "dynamic programming" comes from control theory, and
- in this sense "programming" means the use of an array (table) in which a solution is constructed.

Dynamic Programming

- "Programming" here means "planning"
- Main idea:
 - set up a recurrence relating a solution to a larger instance to solutions of some smaller instances
- solve smaller instances once
 - record solutions in a table
 - extract solution to the initial instance from that table

Permutations

- Suppose we have four balls marked A, B, C, and D in an urn or container, and two balls will be drawn
- AB & BA are different. 4(3) = 12

AB	AC	AD
BA	BC	BD
CA	CB	CD
DA	DB	DC.

Strategy

The steps in the development of a dynamic programming algorithm are as follows:

- 1. *Establish* a recursive property that gives the solution to an instance of the problem.
- 2. Solve an instance of the problem in a *bottom-up* fashion by solving smaller instances first.

Contd...

- if we have four balls and three are
- drawn, the first ball can be any one of four; once the first ball is drawn, the second ball can be any of three; and once the second ball is drawn, the third ball can be any of two.

Contd...

- In general, if we have n balls, and we are picking k of them,
- $(n)(n-1) \bullet \bullet (n-k+1).$
- If k=n,
 -(n)(n 1) • (n n + 1) = n!.

Combinations

- A and B, A and C, A and D, B and C, B and D, C and D.
- 6 distinct outcomes.
- 4(3)/2 = 6.
- 3 balls to be taken.
- 4(3)(2)/3! = 4.

Contd...

 if there are n balls and k balls are drawn, then

$$\frac{(n)(n-1)\cdots(n-k+1)}{k!}.$$

$$(n)(n-1)\cdots(n-k+1) = (n)(n-1)\cdots(n-k+1)\times\frac{(n-k)!}{(n-k)!}$$
$$= \frac{n!}{(n-k)!},$$

Contd...

- Binomial coefficients are coefficients of the binomial formula:
- $(a + b)^n = C(n,0)a^nb^0 + ... + C(n,k)a^{n-k}b^k + ... + C(n,n)a^0b^n$
- Recurrence:
- C(n,k) = C(n-1,k) + C(n-1,k-1) for n > k > 0
- C(n,0) = 1, C(n,n) = 1 for $n \ge 0$

$$(a + b)^{n} = \sum_{k=0}^{n} \frac{n!}{k!(n - k)!} a^{k} b^{n-k}.$$

The **binomial theorem** provides a useful method for raising any binomial to a nonnegative integral power.

Consider the patterns formed by expanding $(x + y)^n$.

$$(x + y)^{0} = 1$$
 \leftarrow 1 term
 $(x + y)^{1} = x + y$ \leftarrow 2 terms
 $(x + y)^{2} = x^{2} + 2xy + y^{2}$ \leftarrow 3 terms
 $(x + y)^{3} = x^{3} + 3x^{2}y + 3xy^{2} + y^{3}$ \leftarrow 4 terms
 $(x + y)^{4} = x^{4} + 4x^{3}y + 6x^{2}y^{2} + 4xy^{3} + y^{4}$ \leftarrow 5 terms
 $(x + y)^{5} = x^{5} + 5x^{4}y + 10x^{3}y^{2} + 10x^{2}y^{3} + 5xy^{4} + y^{5}$ \leftarrow 6 terms

Notice that each expansion has n + 1 terms. **Example**: $(x + y)^{10}$ will have 10 + 1, or 11 terms Consider the patterns formed by expanding $(x + y)^n$.

$$(x + y)^{0} = 1$$

$$(x + y)^{1} = x + y$$

$$(x + y)^{2} = x^{2} + 2xy + y^{2}$$

$$(x + y)^{3} = x^{3} + 3x^{2}y + 3xy^{2} + y^{3}$$

$$(x + y)^{4} = x^{4} + 4x^{3}y + 6x^{2}y^{2} + 4xy^{3} + y^{4}$$

$$(x + y)^{5} = x^{5} + 5x^{4}y + 10x^{3}y^{2} + 10x^{2}y^{3} + 5xy^{4} + y^{5}$$

- 1. The exponents on *x* decrease from *n* to 0. The exponents on *y* increase from 0 to *n*.
- 2. Each term is of degree *n*. **Example**: The 5th term of $(x + y)^{10}$ is a term with $x^{6}y^{4}$.

The coefficients of the binomial expansion are called **binomial coefficients**. The coefficients have symmetry.

$$(x+y)^{5} = 1x^{5} + 5x^{4}y + 10x^{3}y^{2} + 10x^{2}y^{3} + 5xy^{4} + 1y^{5}$$

The first and last coefficients are 1. The coefficients of the second and second to last terms

are equal to *n*.

Example: What are the last 2 terms of $(x + y)^{10}$? Since n = 10, the last two terms are $10xy^9 + 1y^{10}$.

The coefficient of $x^{n-r}y^r$ in the expansion of $(x + y)^n$ is written $\binom{n}{r}$ or ${}_{n}C_{r}$. So, the last two terms of $(x + y)^{10}$ can be expressed as ${}_{10}C_{9}xy^9 + {}_{10}C_{10}y^{10}$ or as $\binom{10}{9}xy^9 + \binom{10}{10}y^{10}$. The triangular arrangement of numbers below is called **Pascal's Triangle**.

$$1 0th row$$

$$1 1 1 1st row$$

$$1 + 2 = 3 1 2 1 2nd row$$

$$1 3 3 1 3rd row$$

$$6 + 4 = 10 1 4 6 4 1 4th row$$

$$1 5 10 10 5 1 5th row$$

Each number in the interior of the triangle is the sum of the two numbers immediately above it.

The numbers in the n^{th} row of Pascal's Triangle are the binomial coefficients for $(x + y)^n$.

Contd...

Theorem 1. The binomial coefficients B(n,k) defined by formula (1) satisfy

(2)
$$B(n,k) = B(n-1,k-1) + B(n-1,k), \quad 1 \le k \le n-1.$$

Together with the initial conditions B(n,0) = B(n,n) = 1 recursion (2) completely specifies the binomial coefficients.

1

Proof

Proof. Using equation (1) we obtain

$$B(n-1,k-1) = \frac{(n-1)!}{(k-1)!(n-k)!} = \frac{(n-1)!}{(k-1)!(n-k-1)!} \frac{1}{n-k},$$

$$B(n-1,k) = \frac{(n-1)!}{k!(n-k-1)!} = \frac{(n-1)!}{(k-1)!(n-k-1)!} \frac{1}{k}.$$

Proof

$$B(n-1, k-1) + B(n-1, k) = \frac{(n-1)!}{(k-1)!(n-k-1)!} \left(\frac{1}{n-k} + \frac{1}{k}\right)$$
$$= \frac{(n-1)!}{(k-1)!(n-k-1)!} \frac{n}{k(n-k)}$$
$$= \frac{n!}{k!(n-k)!}$$
$$= B(n, k).$$

FIGURE 8.1 Table for computing the binomial coefficient C(n, k) by the dynamic programming algorithm

(=)									
(B)	n								
	0	1							
	1	1	1						
	2	1	2	1					
	3	1	3	3	1				
	4	1	4	6	4	1			
	5	1	5	10	10	5	1		
	6	1	6	15	20	15	6	1	
_	7	1	7	21	35	35	21	7	1
Та	Table: Pascal's triangle.								

Algorithm

ALGORITHM *Binomial*(*n*, *k*)

//Computes C(n, k) by the dynamic programming algorithm //Input: A pair of nonnegative integers $n \ge k \ge 0$ //Output: The value of C(n, k)for $i \leftarrow 0$ to n do for $j \leftarrow 0$ to $\min(i, k)$ do if j = 0 or j = i $C[i, j] \leftarrow 1$ else $C[i, j] \leftarrow C[i - 1, j - 1] + C[i - 1, j]$ return C[n, k]

Analysis Addition is the operation

$$\begin{split} A(n,k) &= \sum_{i=1}^{k} \sum_{j=1}^{i-1} 1 + \sum_{i=k+1}^{n} \sum_{j=1}^{k} 1 = \sum_{i=1}^{k} (i-1) + \sum_{i=k+1}^{n} k \\ &= \frac{(k-1)k}{2} + k(n-k) \in \Theta(nk). \end{split}$$

C(12,5)

	k						
n		0	1	2	3	4	5
	0	1					
	1	1	1				
	2	1	2	1			
	3	1	3	3	1		
	4	1	4	6	4	1	
	5	1	5	10	10	5	1
	6	1	6	15	20	15	6
	7	1	7	21	35	35	21
	8	1	8	28	56	70	56
	9	1	9	36	84	126	126
	10	1	10	45	120	210	252
	11	1	11	55	165	330	462
	12	1	12	66	220	495	792

Use Excel for DEMO

Fact(12)	479001600
Fact(5)	120
Fact(7)	5040
12c5	792

Longest Common Subsequence

~

Example if i = 0 or j = 0 $X = \langle A, B, C, B, D, A \rangle$ $Y = \langle B, D, C, A, B, A \rangle$ c[i, j] = c[i-1, j-1] + 1 max(c[i, j-1]) $\begin{bmatrix} c[i-1, j-1] + 1 & \text{if } x_i = y_j \\ max(c[i, j-1], c[i-1, j]) & \text{if } x_i \neq y_j \\ 0 & 1 & 2 & 3 & 4 & 5 \end{bmatrix}$ 6 В С A $|f x_i = y_j|$ D A 0 x_i b[i, j] = " \" 0 0 0 0 0 0 0 1 A 0 Else if ←1 b c[i - 1, j] ≥ c[i, j-1] 2 B 0 ←1 ←2 ←1 2 b[i, j] = "↑" з с 0 ←2 2 2 2 else 4 В 0 3 2 ←3 b[i, j] = " ← " 5 D 0 2 6 A 0 2 7 В add notes • 😅 🖑 🗆 🛟 10:37 / 11:59 **1**

• C(I,j) = max (c(i-1,j), c(I,j-1) + 1 /0

Gift collection

	0	1	2	3	4	5	6
0							
1				Gift			gift
2					Gift		
3			Gift			Gift	
4					Gift		
5		Gift				Gift	
6				Gift			Gift

Gift collection

	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	0	0	1	1	1	2
2	0	0	0	1	2	2	2
3	0	0	1	1	2	3	3
4	0	0	1	1	3	3	3
5	0	1	1	1	3	4	4
6	0	1	1	2	3	4	5

Matrix Chain Multiplication

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \times \begin{bmatrix} 7 & 8 & 9 & 1 \\ 2 & 3 & 4 & 5 \\ 6 & 7 & 8 & 9 \end{bmatrix} = \begin{bmatrix} 29 & 35 & 41 & 38 \\ 74 & 89 & 104 & 83 \end{bmatrix}$$

In general, to multiply an $i \times j$ matrix times a $j \times k$ matrix, using the standard method, it is necessary to do

 $i \times j \times k$ elementary multiplications.

Example

$\begin{array}{cccccccc} A & \times & B & \times & C & \times & D \\ 20 \times 2 & 2 \times 30 & 30 \times 12 & 12 \times 8 \end{array}$

5 different orders

A(B(CD)) $30 \times 12 \times 8 + 2 \times 30 \times 8 + 20 \times 2 \times 8 = 3,680$ (AB)(CD) $20 \times 2 \times 30 + 30 \times 12 \times 8 + 20 \times 30 \times 8 = 8,880$ A((BC)D) $2 \times 30 \times 12 + 2 \times 12 \times 8 + 20 \times 2 \times 8 = 1,232$ ((AB)C)D $20 \times 2 \times 30 + 20 \times 30 \times 12 + 20 \times 12 \times 8 = 10,320$ (A(BC))D $2 \times 30 \times 12 + 20 \times 2 \times 12 + 20 \times 12 \times 8 = 3,120$

$$A_1(\underbrace{A_2A_3\cdots A_n}_{t_{n-1} \text{ different orders}} t_n \ge 2^{n-2}.$$

$M[1][6] = \min(M[1][k] + M[k + 1][6] + d_0d_kd_6).$

Recurrence equation

 $M[i][j] = \min_{\substack{i \le k \le j-1 \\ M[i][i]}} (M[i][k] + M[k+1][j] + d_{i-1}d_kd_j) \quad \text{if } i < j$

Compute diagonal 0:

 $M[i][i] = 0 \quad \text{for } 1 \le i \le 6.$

$$M[1][2] = \min_{\substack{1 \le k \le 1 \\ m \le k \le 1}} (M[1][k] + M[k + 1][2] + d_0 d_k d_2)$$

= $M[1][1] + M[2][2] + d_0 d_1 d_2$
= $0 + 0 + 5 \times 2 \times 3 = 30$

Compute diagonal 2:

$$M[1][3] = \min_{\substack{1 \le k \le 2}} (M[1][k] + M[k + 1][3] + d_0 d_k d_3)$$

= minimum(M[1][1] + M[2][3] + d_0 d_1 d_3,
M[1][2] + M[3][3] + d_0 d_2 d_3)
= minimum(0 + 24 + 5 × 2 × 4, 30 + 0 + 5 × 3 × 4) = 64

P(1,6)=1, P(2,6)=5

 $A_1(A_2A_3A_4A_5A_6).$

 $(A_2A_3A_4A_5)A_6.$

 $A_1((((A_2A_3)A_4)A_5)A_6).$

P Matrix

