Dijkstras Algorithm

Algorithm

Single Source Shortest Paths Problem: Given a weighted connected graph G,
find shortest paths from source vertex s to each of the other vertices

Dijkstra’s algorithm: Similar to Prim’s MST algorithm, with a different way of
computing numerical labels: Among vertices not already in the tree, it finds
vertex u with the smallest sum d,+ w(v,u)

where

v is a vertex for which shortest path has been already found on preceding
iterations (such vertices form a tree)

d, is the length of the shortest path form source to v w(v,u) is the length
(weight) of edge from vto u

Single--Source Shortest paths

Input: directed graph G=(\, E). (m=|E|, n=|V|)
* each edge has non negative length |,
* source vertex s

Length of path
= sum of edge lengths

Output: for each » v, compute

\
L(v) := length of a shortest s-v path in G @/’ D\‘;b”»;»o

Path length =6

Assumption:
1. [for convenience] Vv e V.3s = v path

2. [Important]ie >0 vee E

Example

Source L.
vertex -

This array

o Dijkstra’s Algorithm

explanation!

Ini*alize:

- X 5/[s] [ver*ces processed so far]

- A[s] =0 [computed shortest path distances]
(B[s] = empty path [computed shortest

paths]

Main Loop
- while XFV: -need to grow
- 2 X by one node
£

SF g
4

Main Loop cont'd:

among all edges (v,w) € E
with v € X, w ¢ X,
pick the one that minimizes

A+ L
[call it (v*, w*)]

- add w* to X
rset A [‘U”’*] = A [}l"’*] =t l.l,«,u.-*
- set Blw*| := Blv*|u(v*, w")

Non-Example

Question: why not reduce computing shortest paths with negative

edge lengths to the same problem with non negative lengths? (by
adding large constant to edge lengths)

Problem: doesn’t preserve shortest paths !

Also: Dijkstra’s algorithm incorrect on this graph |
(computes shortest s-t distance to be -2 rather than -4)

Tim Roughgarden

ALGORITHM Dijkstra(G, s)

//Dijkstra’s algorithm for single-source shortest paths
/[Input: A weighted connected graph G = (V, E) with nonnegative weights

/ and its vertex s
//Output: The length d, of a shortest path from s to v
/! and its penultimate vertex p, for every vertex v in V

Initialize(Q) //initialize vertex priority queue to empty
for every vertex vin V do
d, < o0; p, < null
Insert(Q, v, d,) //initialize vertex priority in the priority queue
d, < 0; Decrease(Q, s, d;) //update priority of s with d
Vi <0
fori < Oto|V|—1do
u* < DeleteMin(Q) //delete the minimum priority element
Vi < Vr U {u™}
for every vertex u in V — V; that is adjacent to u* do
ifd,+wu* u) <d,
d, <~d+wu*,u), p,<u*
Decrease(Q, u, d,)

FIGURE 9.9 |dea of Dijkstra’s algorithm. The subtree of the shortest paths already found
Is shown in bold. The next nearest to the source v, vertex, u*, is selected
by comparing the lengths of the subtree’s paths increased by the distances
to vertices adjacent to the subtree’s vertices.

Tree vertices Remaining vertices

a(—, 0) b(a, 3) c(—, c0) d(a,7) e(—, o0)

b(a, 3) c(b,3+4) db,3+2) e(—, 00)
d(b, 5) cb,7) e(d, 5+4)

c(b, 7) e(d,9)

e(d, 9)

The shortest paths (identified by following nonnumeric labels
backward from a destination vertex in the left column to the
source) and their lengths (given by numeric labels of the tree
vertices) are

fromatob: a-—»b of length 3
fromatod: a-—b—d of length 5
fromatoc: a—b—c of length 7

fromatoe: a—b—d—e oflength9

FIGURE 9.10 Application of Dijkstra’s algorithm. The next closest vertex is shown in
bold.

Efficiency

* Doesn’t work for graphs with negative weights
e Applicable to both undirected and directed graphs

e Efficiency

* O(|V|2) for graphs represented by weight matrix and array
implementation of priority queue

* O(|E|log|V]|) for graphs represented by adj. lists and min-heap
implementation of priority queue

Example

Solution

Tree vertices Remaining vertices

a(-,0) b(-,00) c¢(—00) d(a,7) e(-,00)
d(a,7) b(d,74+2) ¢(d,7+5) e(-,00)
b(d,9) c(d,12) e(-,0)
c(d,12) e(c,12+4-6)

e(c.18)

The shortest paths (identified by following nonnumeric labels backwards
from a destination vertex to the source) and their lengths are:

fromatod: a—d of length 7
fromatodb: a—d—b of length 9
fromatoec a—d—ec of length 12
fromatoe: a—d—ec—e of length 18

. Let T be a tree constructed by Diyjkstra’s algorithm in the process of solving
the single-source shortest-paths problem for a weighted connected graph G.

a. Irue or false: T is a spanning tree of G7
b. True or false: T is a minimum spanning tree of G?7

Steiner Tree

* minimum-weight connected subgraph of G that includes all the
vertices. It is always a tree. Steiner trees have practical applications,
for example, in the determination of the shortest total length of wires
needed to join some number of points

sl

52

Huffman Code

* For example, we can use a fixed-length encoding that assigns to each symbol a
bit string of the same length m (m =log n). This is exactly what the standard ASCI|

code does.

* One way of getting a coding scheme that yields a shorter bit string on the average
is based on the old idea of assigning shorter codewords to more frequent
symbols and longer codewords to less frequent symbols.

* This idea was used, in particular, in the telegraph code invented in the mid-19th
century by Samuel Morse. In that code, frequent letters such as e(.) are assigned
short sequences of dots and dashes while infrequent letters such as g(--.-) and

z(--..) have longer ones

* Variable-length encoding, which assigns codewords of
different lengths to different symbols, introduces a
problem that fixed-length encoding does not have.
Namely, how can we tell how many bits of an encoded
text represent the first (or, more generally, the ith)
symbol? To avoid this complication, we can limit
ourselves to the so-called prefix-free (or simply prefix)
codes. In a prefix code, no codeword is a prefix of a
codeword of another symbol.

e David Huffman MIT student

Huffman's algorithm

Step 1 Initialize n one-node trees and label them with the symbols of the
alphabet given. Record the frequency of each symbol in its tree’s root
to indicate the tree’s weighr. (More generally, the weight of a tree will
be equal to the sum of the frequencies in the tree’s leaves.)

Step 2 Repeat the following operation until a single tree is obtained. Find
two trees with the smallest weight (ties can be broken arbitrarily, but

see Problem 2 in this section’s exercises). Make them the left and right
subtree of a new tree and record the sum of their weights in the root
of the new tree as its weight.

A tree constructed by the above algorithm is called a Huffman tree. It
defines—in the manner described above—a Huffman code.

Example

symbol

frequency ‘ 0.35 0.1 0.2 0.2 0.15

0.1 0.16 0.2 0.2 0.35
B _ C D A
 —
0.2 0.2 @ 0.35
C D A
0.1 0.16
B —
r Al
TS
A

0.2 0.2
C D
Bl
0.35
A

FIGURE 9.11 Example of constructing a Huffman coding tree

* Encode DAD
 10011011011101 Decode this string

symbol A B C D

frequency | 04 0.1 0.2 0.15 0.15

e ABACABAD encode
 100010111001010

— T
01 0.15 0.15 02 04
B D _ C A
A
TN
0.15 02 (0.25) 04
B C A A A
/ \
/ \
0.1 0.15
B D
A
TN TN 0.4
1 025 .' | 0.35]
fl__ A Y _.J'f\%- A) A
/ ‘~. / \
.-"; "‘-." lI.-' "'-.\
0.1 0.15 0.15 02
B D _ C

0.2

(035

0.15

0.15

A

0.1

0.4

0.4

0.2

0.15

0.15

0.1

Example

symbol | A B C D E

probability | 0.1 0.1 0.2 0.2 0.4

0.1 0.1 02 0.2 0.4
A B C D E
..———-"’A“'—_“x
SN
52 0.2 0.2 04
AN A C D E
/ \
0.1 0.1
A B
A
.(,..-"
0.2 | D.d:_ | 04
D /_/\ E
— ,_\
(02) 02
AA -
/ A
i Y
0.1 0.1
A B

04

02

0.2

A Huffman code 18 an optimal prefix-free variable-length encoding scheme

that assigns bit strings to symbols based on their frequencies in a given text.
This is accomplished by a greedy construction of a binary tree whose leaves

represent the alphabet symbols and whose edges are labeled with (s and 1's.

Example

10. Card guessing Design a strategy that minimizes the expected number of
questions asked in the following game [Gar94]. You have a deck of cards that
consists of one ace of spades, two deuces of spades, three threes, and on up
to nine nines, making 45 cards in all. Someone draws a card from the shuffled
deck, which you have to identify by asking questions answerable with ves
Or no.

card ace deuce three four five six seven eight nine

probability 1/45 2/45 3/45 4/45 5/45 6/45 T/45 8/45 9/45

Huffman’s tree for this data looks as follows:

‘ E‘, T 8 iaaiape-h#h;io*-i*g
* " ao|sal|aallas el
¥ L * . * ¥ » v *
: N w Y| wpl|w o (¥ ¥ v o} v vl &
1/45 2/45 3/45 4/45 5/45 6/45 7/45 8/45 9/45
\jfﬂ-ﬁ \ ‘ Elfd-EJ ‘ 15/45
6/45
12/45 ~
>
18/45 ~
A
27/45 ~
v
45/45

3.

|

[if o1 5'2+’1-fi+ff=-5+:f1-ﬁ+:f:-?+3.8+2.9 135

i=1

