Graph Primitives

4 4

% Dijkstra’s Algorithm:

The Basics

Design and Analysis
of Algorithms |

Single-Source Shortest Paths

Input: directed graph G=(V, E). (m=|E|, n=|V|)
* each edge has non negative length 1,

* source vertex s
Length of path
= sum of edge lengths

Output: for each v €V , compute

\
L(v) = length of a shortest s-v path in G @) 0\1;03/’0

Assumption: Path length =6
1. [for convenience] Vv € V,3s = v path
2. [important]ie > 0 Ve € E

Tim Roughgarden

One of the following is the list of shortest-path distances for the
nodes s,z,w,¢, respectively. Which is it?

00,1,2,3

O 0,1,4,7

0 0,1,4,6

Source

Why Another Shortest-Path Algorithm?

Question: doesn’t BFS already compute shortest paths in linear

time? ; '
Answer: yes, IF 1. = 1 for every edge e. ‘ \

Question: why not just replace each edge e by directed path of 1,

unit length edges: PR o IO L

Answer: blows up graph too much

Solution: Dijkstra’s shortest path algorithm.

Tim Roughgarden

This array

only to help
explanation!
Initialize:
* X5/[s] [vertices processed so far]

* A{s] =0 [computed shortest path distances]
< B[s] = empty path [computed shortest
paths]

Main Loop
* while X#V:

,Ff

-need to grow
x by one node

Dijkstra’s Algorithm

Main Loop cont’d:

o among all edges (v,w) € E
with v € X, w ¢ X,
pick the one that minimizes
Alv]H+ low

[call it (v, w™*)]
* add w* to X

eset Alw”] := A[v*] + Ly
set Blw"| := Bv|u(v®, w")

Tim Roughgarden

Example

Q&‘f};’_,\cv &

N\
4

Dijkstra’s greedy
score for (v, w):
Alv]+1,,

N ,QLT.J\‘: ¢aVv=w

A O

Tim Roughgarden

Non-Example

Question: why not reduce computing shortest paths with negative
edge lengths to the same problem with non negative lengths? (by

adding large constant to edge lengths) 4 |

Problem: doesn’t preserve shortest paths ! C,j(_ — D
NSz M=

Also: Dijkstra’s algorithm incorrect on this graph ! WL 68

(computes shortest s-t distance to be -2 rather than -4)

Tim Roughgarden

Graph Primitives

4 4

% Dijkstra’s Algorithm:
Why It Works

Design and Analysis
of Algorithms |

This array

only to help
explanation!
Initialize:
* X5/[s] [vertices processed so far]

* A{s] =0 [computed shortest path distances]
< B[s] = empty path [computed shortest
paths]

Main Loop
* while X#V:

,Ff

-need to grow
x by one node

Dijkstra’s Algorithm

Main Loop cont’d:

o among all edges (v,w) € E
with v € X, w ¢ X,
pick the one that minimizes
Alv]H+ low

[call it (v, w™*)]
* add w* to X

eset Alw”] := A[v*] + Ly
set Blw"| := Bv|u(v®, w")

Tim Roughgarden

Correctness Claim

Theorem [Dijkstra] For every directed graph with nonnegative
edge lengths, Dijkstra’s algorithm correctly computes all shortest-
path distances.

i.e., Alv] = L(v) Yv € V]

what algorithm
computes

True shortest
distance from s to v

Proof: by induction on the number of iterations.
Base Case: A[s] = L[s] =0 (correcy)

Tim Roughgarden

Proof

Inductive Step:
Inductive Hypothesis: all previous iterations correct (1.e., A[v] = L(v)
and B[v] 1s a true shortest s-v path in G, for all v already 1n X).

In current iteration: i,x JotinX
We pick an edge (V*;: w*) and we add w* to X. @_}’\

WesetB[W*]ZB[\g*]u(V*,W*) b @\p

~—t

has length L(v*) + 1 sy« has length L(v*)

N

L(v*) by LH L
Also: A[w*] = A[V¥] + Lu,s = L(v¥) + 1 WU

vEw* VvEWE

Tim Roughgarden

Proof (con’d)
Upshot: in current iteration, we set:
1. A[w*] =L(v*) + L sy
2. B[w*] =an s -> w* path with length (L(v*) + 1+, +)

To finish proof: need to show that every s-w* path has length >=

L(v*) +1«,+ (1f so, our path is the shortest!) A path P
So: Let P= any s->w™* path. Must “cross the frontier’: - S-S
&
and so has the form: e~

Tim Roughgarden

Proof (con’d)

So: every s->w™* path P has to have the form

(Since no negative
edges !)

>= length of /
. Length @ @

shortest s=y path =
(y \/By inductive hypothesis
(since ¥ € X)

€ X
length of ¢ X)

Total length of path P: at least A[y] + C,, 7 our patn |
-> by Dijkstra’s greedy criterion < Aly] + 1. < length of P

Q.E,D,

(y

Tim Roughgarden

Graph Primitives

4 4

% Dijkstra’s Algorithm:

Fast Implementation

Design and Analysis
of Algorithms |

Single-Source Shortest Paths

Input: directed graph G=(V, E). (m=|E|, n=|V|)
* each edge has non negative length 1,

* source vertex s
Length of path

= sum of edge lengths
Output: for each v €V ,compute

\
L(v) := length of a shortest s-v path in G @) 0\1;03/’0

Assumption: Path length = 6

1. [for convenience] Vv € V,3s = v path
2. [important]ie > 0 Ve € E

Tim Roughgarden

This array
only to help
explanation!

Initialize:
=/[s] [vertices processed so far]
* A{s] =0 [computed shortest path distances]
€ Brsl — empt” path |eemp”ted Sh :|_t5 El
—paths}-

Main Loop
* while X#V:

v,
¥ DS

,Ff

-need to grow
x by one node

Dijkstra’s Algorithm

Main Loop cont’d:

o among all edges (v,w) € E
with v € X, w ¢ X,
pick the one that minimizes
Alv]H+ low

[call it (v, w™*)]

e add w* to X
* set 4[11] Alv*] + Ly e

Tim Roughgarden

Which of the following running times seems to best describe a
“naive” implementation of Dijkstra’s algorithm?

* (n-1) 1terations of while loop

© mtn) * §(m) work per iteration
O @(mlogn) [8(1) work per edge]
O a(n12)

CAN WE DO BETTER?

Heap Operations

Recall: raison d’€tre of heap = perform Insert, Extract-Min in O(log n) time.
[rest of video assumes familiarity with heaps] |
Height ~ log,n

* conceptually, a perfectly balanced binary tree

*Heap property: at every node, key <= children’s keys
* extract-min by swapping up last leaf, bubbling down
* insert via bubbling up

Also: will need ability to delete from middle of heap. (bubble up or down as
needed)

Tim Roughgarden

Two Invariants e

Invariant # 1: elements in heap =
vertices of V-X.

Invariant #2: forv ¢ X

Key[v] = smallest Dijstra greedy
score of an edge (u, v) in E with v
in X

(of 4o 1f no such edges exist)

of (v, w) :
Alv] +L,,

/"\
X N —X
Point: by invariants, Extract-

Min yields correct vertex w* to
add to X next.

(and we set A[w*] to key[w™*])

Tim Roughgarden

Maintaining the Invariants

To maintain Invariant #2: [1.e., that vv ¢ X Needto
Key[v] = smallest Dijkstra greedy wpdate key!
score of edge (u,v) with u in X] \

When w extracted from heap (i.e., added to X) _»)
* for each edge (w,v) in E: e CAOOK pew V=R

cTOSSm%

*if vin V-X (1.e., in heap) .
(- delete v from heap

oojate | ¢ recompute key[v] = min{key[v], A[w] + 1, }
* re-Insert v into heap ™

Greedy score of (w,v)

Tim Roughgarden

Running Time Analysis

You check: dominated by heap operations. (O(log(n)) each)
* (n-1) Extract mins

* cach edge (v,w) triggers at most one Delete/Insert combo
(if v added to X first)

\J
of heap operations in O(n+m) & O(m) \f. a E

nning time = O(m log(n)) (like\sorting) Y. L

So:-
So:ru

Since graph is
weakly connected

Tim Roughgarden

	algo-dijkstra-basics_typed.pdf
	algo-dijkstra-correctness_typed.pdf
	algo-dijkstra-runtime_typed.pdf

