Design and Analysis of
Algorithms



Time Complexity and Space Complexity

Definition 1.2 [Space/Time complexity] The space complezity of an algo-
rithin is the amount of memory it needs to run to completion. The time

complexity of an algorithm is the amount of computer time it needs to run
to completion. N

Performance evaluation can be loosely divided into two major phases:
(1) a priori estimates and (2) a posteriori testing. We refer to these as
performance analysis and performance measurement respectively.



AbU ‘Abdallah Muhammad ibn Musa al-
Khwarizmi

In the twelfth century, Latin translations of his work on the Indian numerals
introduced the decimal positional number system to the Western world.[4] His
Compendious Book on Calculation by Completion and Balancing presented the first
systematic solution of linear and quadratic equations in Arabic.




Definition

Definition 1.1 [Algorithm]: An algorithm is a finite set of instructions that,
if followed, accomplishes a particular task. In addition, all algorithms must
satis{y the following criteria:

Ll A

Input. Zero or more quantities are externally supplied.
Output. At least one quantity is produced.
Definiteness. Each instruction is clear and unambiguous.

Finiteness. If we trace out the instructions of an algorithm, then for
all cases, the algorithm terminates after a finite number of steps.

Effectiveness. Every instruction must be very basic so that it can be
carried out, in principle, by a person using only pencil and paper. It
is not enough that each operation be definite as in criterion 3; it also
must be feasible. O



Space Complexity

* The space needed by each algorithm is the sum of the following
components :

* (i) Instruction space
e (ii) Data space
* (iii) Environment stack space



Contd...

* Instruction space

* The space needed to store the compiled version of the program
instructions.

e (ii) Data space
* The space needed to store all constant and variable values.
* (iii) Environment stack space

* The space needed to store information to resume execution of partially
completed functions.

 Example : If function 1, invokes function 2, then we must atleast save a
pointer to the instruction of function 1 to be executed when function 2
terminates.



1. A fixed part that is independent of the characteristics (e.g., number,
size) of the inputs and outputs. This part typically includes the in-
struction space (i.e., space for the code), space for simple variables
and fixed-size component variables (also called aggregate), space for
constants, and so on.

2. A variable part that consists of the space needed by component vari-
ables whose size is dependent on the particular problem instance being
solved, the space needed by referenced variables (to the extent that this
depends on instance characteristics), and the recursion stack space (in-
sofar as this space depends on the instance characteristics).

The space requirement S(P) of any algorithm P may therefore be written
as S(P) = ¢+ Sp(instance characteristics), where ¢ is a constant.



lgorithm abc(a, b, ¢)

A
2 A
3 return a+b+bxc+(a+b—c)/(a+b)+4.0;
/] }

Algorithm 1.5 Computesa+b+bxc+ (a+b—c)/(a+b)+4.0



Example 1.4 For Algorithm 1.5, the problem instance is characterized by
the specific values of a, b, and ¢. Making the assumption that one word
1s adequate to store the values of each of a, b, ¢, and the result, we see
that the space needed by abc is independent of the instance characteristics.
Conscquently, Sp(instance characteristics) = 0. O



1  Algorithm Sum(a,n)
2 A

3 s := 0.0;

4 for 1:=1 to n do
5 s := s+ ali;
6 return s;

7

}

Algorithm 1.6 Iterative function for sum



Example 1.5 The problem instances for Algorithm 1.6 are characterized
by n, the number of elements to be summed. The space needed by n is one
word, since 1t is of type integer. The space needed by a is the space needed
by variables of type array of floating point numbers. This is at least n words,
since a must be large enough to hold the n elements to be summed. So, we
obtain Ssym(n) > (n+ 3) (n for af ], one each for n, ¢, and s). O



Algorithm RSum(a, n)
{

if (n < 0) then return 0.0;
else return RSum(a,n — 1) + a[nl;

T N =

}

Algorithm 1.7 Recursive function for sum



Example 1.6 Let us consider the algorithm RSum (Algorithm 1.7). As in
the casc of Sum, the instances are characterized by n. The recursion stack
spacc includes space for the formal parameters, the local variables, and the
return address. Assume that the return address requires only one word of
memory. BEach call to RSum requires at least three words (including space
for the values of n, the return address, and a pointer to a }). Since the depth
of recursion is n + 1, the recursion stack space needed is > 3(n + 1). O



Time Complexity

A program step is loosely defined as a syntactically or semantically mean-
ingful segment of a program that has an execution time that is independent
of the instance characteristics. For example, the entire statement

return a+b+bxc+ (a+b—c)/(a+b)+ 4.0;



e (a) Comments — zero step
* (b) Assignment statement — one step

* (c) Iterative statement — finite number of steps. (for, while, repeat -
until)



1 Algorithm Sum(a,n)

2 A

3 s := 0.0;

4 count ;= count + 1; // count is global; it is initially zero.
5 for : :=1to n do

6 {

7 count := count + 1; // For for

8 s := s + afi]; count := count + 1; // For assignment
9

10 count := count + 1; // For last time of for

11 count := count + 1; // For the return

12 return s;

13 }

Algorithm 1.8 Algorithm 1.6 with count statements added



Algorithm Sum(a,n)

{

for 1+ := 1 to n do count := count + 2;
count := count + 3;

O O DO =

Algorithm 1.9 Simplified version of Algorithm 1.8



1 Algorithm RSum(a,n)

2

3 count := count + 1; // For the if conditional

4 if (n <0) then

D {

6 count := count + 1; // For the return

7 return 0.0;

s}

9 else

10 {

11 count := count + 1; // For the addition, function
12 // invocation and return
13 return RSum(a,n — 1) + a[n];

14

15 }

Algorithm 1.10 Algorithm 1.7 with count statements added



When analyzing a recursive program for its step count, we often obtain
a recursive formula for the step count, for example,

; ) = 2 ifn=20
Rsum (1) = 2+ tRsum(n —1) ifn>0



Matrix addition

1  Algorithm Add(a,b,c,m,n)

2 A

3 for ::=1 to m do

4 for j:=1to n do

5 cli, 7] := ali, ] + bls, jl;
6 }

Algorithm 1.11 Matrix addition



Algorithm Add(a,b,c,m,n)
{

]

2

3 for i ;=1 to m do

1T

5 count := count + 15 // For ‘for ¢’

6 for j:=1to n do

7 {

Y count := count + 15 // For ‘for j’

9 cli,j] 1= ali, ] + bl i

10 count := count + 15 // For the assignment
11 }

12 count := count + 13/ / For loop initialization and
13 // last time of ‘for j’

14 }

15 count = count + 1; // For loop initialization and
16 // last time of ‘for 7’

Algorithm 1.12 Matrix addition with counting statements



Simplified one

1 Algorithm Add(a,b,c,m,n)

2 {

3 for ::=1to m do

4 {

5) count := count + 2;

6 for 7 :=1to n do

7 count := count + 2;
8 }

9 count := count + 1;

10 }

Algorithm 1.13 Simplified algorithm with counting only



Method 2

To determine the step count of an algorithm is to build a table in which we list the total
number of steps contributed by each statement. The final total stepcount is obtained by
consecutive three steps;

H The number of steps per execution (s/e) of the statement is calculated.
H Total number of times each statement is executed (ie frequency)

H Multiply (s/e) and frequency to find the total steps of each statement and add the total
steps of each statement to obtain a final stepcount (i.e. total)



Statement s/e | frequency | total steps
1 Algorithm Sum(a,n) | O — 0

2 0 |- 0

3 s := 0.0; 1 1 1

4 fori:=1tondo |1 n+1 n+1

5 s := s+ afi; 1 n n

6 return s; 1 1 1

7} 0 — 0

Total 2n + 3

Table 1.1 Step table for Algorithm 1.6



frequency total steps
Statement s/e n=0 n>0|n=0 n>0
I Algorithm RSum(a,n) 0 — — 0 0
2
3 if (n <0) then 1 1 1 1 1
4 return 0.0; 1 1 0 1 0
5 else return
6 RSum(a,n—1)+aln]; | 14+ | 0 1 0 l1+x
7 } 0 — — 0 0
| Total ] ] | 2 2+z |

Table 1.2 Step table for Algorithm 1.7



Statement s/e | frequency | total steps
1 Algorithm Add(a,b,c,m,n) |0 — 0

2 0 |- 0

3 for : :=1to m do 1 m+ 1 m+ 1

4 for y:=1to ndo 1 m(n + 1) mn + m

5) cli, j] == ali, 7] + bli, j]; | 1 mn mn

6 ) 0 — 0

Total 2mn + 2m + 1

Table 1.3 Step table for Algorithm 1.11




I Algorithm Fibonacci(n)

2 // Compute the nth Fibonacci number.
3

1 if (n <1) then

5 write (n);

6 else

7 {

8 fnm2:=0; fnml :=1;

9 for i :=2 to n do

10

11 fn:= fonml+ fnm?2;

12 fnm2 := fnml; faml = fn;
13

14 write (fn);

15 }

16}

Algorithm 1.14 Fibonacci numbers



To analyze the time complexity of this algorithm, we need to consider the
two cases (1) n=0o0r 1 and (2) n > 1. When n =0 or 1, lines 4 and 5 get
executed once each. Since each line has an s/e of 1, the total step count for
this case is 2. When n > 1, lines 4, 8, and 14 are each executed once. Line
9 gets executed n times, and lines 11 and 12 get executed n — 1 times each
(note that the last time line 9 is executed, 7 is incremented to n+ 1, and the
loop exited). Line 8 has an s/e of 2, line 12 has an s/e of 2, and line 13 has
an s/e of 0. The remaining lines that get executed have s/e’s of 1. The total
steps for the case n > 1 is therefore 4n + 1. O



