
wk12

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2015.

Fourth Semester

Computer Science and Engineering

CS 6402 — DESIGN AND ANALYSIS OF ALGORITHMS

(Common to Information Technology)

(Regulation 2013)

Time : Three hours Maximum : 100 marks

Answer ALL questions.

PART A — (10 2 = 20 marks)

1. Write an algorithm to find the number of binary digits in the binary
representation of a positive decimal integer.

2. Write down the properties of asymptotic notations.

3. Design a brute-force algorithm for computing the value of a polynomial

01
1

1)(axaxaxaxp n
n

n
n

 at a given point 0x and determine its

worst-case efficiency class.

wk12

 77099 2

4. Derive the complexity of Binary Search algorithm.

The recurrence equation is:

5. Write down the optimization technique used for Warshall’s algorithm. State
the rules and assumptions which are implied behind that.

Dynamic programming. Dynamic programming is a technique for solving

problems with overlapping subproblems. Typically, these subproblems arise

from a recurrence relating a given problem’s solution to solutions of its smaller

subproblems. Rather than solving overlapping subproblems again and again,

dynamic programming suggests solving each of the smaller subproblems only

once and recording the results in a table from which a solution to the original

problem can then be obtained.

6. List out the memory functions used under Dynamic Programming.

 Memory functions use under dynamic programming technique is called

memoization. The goal is to get a method that solves only subproblems that are

necessary and does so only once. It is a top down approach instead for classic

dynamic programming, which is bottom up.

7. What do you mean by ‘perfect matching’ in bipartite graphs?

A perfect matching is a matching in which each node has exactly one edge
incident on it.

8. Define flow ‘cut’.

The “cut” has the following property: if all the edges of a cut were deleted from

the network, there would be no directed path from source to sink.

9. How NP-Hard problems are different from NP-Complete?

NP: A decision problem where instances of the problem for which the answer is

yes have proofs that can be verified in polynomial time.

wk12

 77099 3

NP-Complete: An NP problem X for which it is possible to reduce any other NP

problem Y to X in polynomial time. Intuitively this means that we can solve Y

quickly if we know how to solve X quickly.

A decision problem D is said to be NP-complete if:

 1. it belongs to class NP

 2. every problem in NP is polynomially reducible to D

NP Hard: These are the problems that are even harder than the NP-complete

problems.

10. Define Hamiltonian Circuit problem.

Hamiltonian Path in an undirected graph is a path that visits each vertex

exactly once. A Hamiltonian cycle (or Hamiltonian circuit) is a Hamiltonian

Path such that there is an edge (in graph) from the last vertex to the first

vertex of the Hamiltonian Path.

(0)--(1)--(2)

 | / \ |

 | / \ |

 | / \ |

(3)-------(4) Hamiltonian Circuit is

{0,1,2,4,3,0}, {0,3,4,2,1,0}

PART B — (5 16 = 80 marks)

11. (a) If you have to solve the searching problem for a list of n numbers, how
can you take advantage of the fact that the list is known to be sorted?
Give separate answers for

 (i) lists represented as arrays.

 (ii) lists represented as linked lists.

 Compare the time complexities involved in the analysis of both the
algorithms. (16)

Answer 11(a) (i) Use Binary Search [Algorithm 4 Marks, Analysis 4 Marks]

wk12

 77099 4

 The recurrence equation is:

 Solving by master’s theorem, we get

 (ii) When searching in a sorted linked list, stop as soon as an element greater

than or equal to the search key is encountered.

 [Algorithm 4 Marks, Analysis 4 marks]

wk12

 77099 5

 Analysis:

 Cworst(n) = n +1.

 Cavg(n) = (2−p)(n+1) /2

Or

 (b) (i) Derive the worst case analysis of Merge Sort using suitable
illustrations. (8)

 (ii) Derive a loose bound on the following equation:

 1542142235)(24578 xxxxxxxf . (8)

 Answer: 11(b)(i) Merge Sort Algoithm 4 Marks, Analysis 4 Marks]

wk12

 77099 6

 Setting recurrence equation we get:

 Solving by masters theorem we get

 11(b)(ii) A bound (lower bound or upper bound) is said to be loose bound if
the inequality is strictly less.

wk12

 77099 7

)(93)(

|)15||1||4||2||14||22||35(||)(|

)/15/1(/4/2/14/2235(|)(|

|1542142235||)(|

1542142235)(

98

8

876438

24578

24578

xoxxf

xxf

xxxfxxxxxf

xxxxxxxf

xxxxxxxf

12. (a) (i) Solve the following using Brute-Force algorithm: (10)

 Find whether the given string follows the specified pattern and
return 0 or 1 accordingly.

 Examples:

 (1) Pattern: “abba”, input: “redblueredblue’ should return 1

 (2) Pattern: “aaaa”, input: “asdasdasdasd’ should return 1

 (3) Pattern: “aabb”, input: “xyzabcxzyabc” should return 0

 (ii) Explain the convex hull problem and the solution involved behind
it. (6)

wk12

 77099 8

Answer:

12(a)(i) Brute force algorithm: [analysis 5 marks, algorithm 5 marks]

 pattern is abba [2 a's and 2 b's] and string = redbluebluered [14 chars]

 Let number of chars in 'a' = x and 'b' = y

 3x + 4y = 14 find all possibilities of x and y,

 here it came : x = 2 and y = 2

 Loop over all possibilities of x and y

 Check in one more loop if string is following that pattern or not.

 The approach is:

 Example: pattern = [a b a b], given string = redblueredblue (14 characters in

total)

 |a| (length of a) = 1, then that makes 2 characters for as and 12 characters is

left for bs, i.e. |b| = 6. Divided string = r edblue r edblue. Whoa, this

matches right away!

 (just out of curiosity) |a| = 2, |b| = 5 -> divided string = re dblue re dblue ->

match

 Example 2: pattern = [a b a b], string = redbluebluered (14 characters in total)

 |a| = 1, |b| = 6 -> divided string = r edblue b luered -> no match

 |a| = 2, |b| = 5 -> divided string = re dblue bl uered -> no match

 |a| = 3, |b| = 4 -> divided string = red blue blu ered -> no match

 Like this, it should be trial and error for |a|, |b| length.

 Algorithm: function brute_force(text[], pattern[])

 {

 // let n be the size of the text and m the size of the

 // pattern

 for(i = 0; i < n; i++) {

 for(j = 0; j < m && i + j < n; j++)

 if(text[i + j] != pattern[j]) break;

 // mismatch found, break the inner loop

 if(j == m) // match found

 }

 }

12(a)(ii) Convex Hull problem: [Algorithm 5 Marks Analysis 3 Marks]

 DEFINITION A set of points (finite or infinite) in the plane is called convex if for

any two points p and q in the set, the entire line segment with the endpoints at p

and q belongs to the set.

 The convex hull of a set S of points is the smallest convex set containing S.

(The “smallest” requirement means that the convex hull of S must be a subset of

any convex set containing S.). The convex hull of any set S of n>2 points not all on

the same line is a convex polygon with the vertices at some of the points of S. (If all

the points do lie on the same line, the polygon degenerates to a line segment but

still with the endpoints at two points of S.)

wk12

 77099 9

 The convex-hull problem is the problem of constructing the convex

hull for a given set S of n points. To solve it, we need to find the points

that will serve as the vertices of the polygon in question. Mathematicians

call the vertices of such a polygon “extreme points.” By definition, an

extreme point of a convex set is a point of this set that is not a middle

point of any line segment with endpoints in the set. For example, the

extreme points of a triangle are its three vertices, the extreme points of a

circle are all the points of its circumference, and the extreme points of the

convex hull of the set of eight points.

 Analysis:

 Finding point farthest away from line P1P2 can be done in linear time

 Time efficiency:

 worst case: Θ(n2) (as quicksort)

 average case: Θ(n) (under reasonable assumptions about distribution of

points given)

Or

 (b) A pair contains two numbers, and its second number is on the right side
of the first one in an array. The difference of a pair is the minus result
while subtracting the second number from the first one. Implement a
function which gets the maximal difference of all pairs in an array (using
Divide and Conquer method). (16)

 Answer: [Explanation 6 Marks, Implementation 6 Marks, Example and
Analysis 4 Marks]

 A pair contains two numbers, and its second number is on the right side of the

first one in an array. The difference of a pair is the minus result while

subtracting the second number from the first one. Please implement a function

which gets the maximal difference of all pairs in an array. For example, the

maximal difference in the array {2, 4, 1, 16, 7, 5, 11, 9} is 11, which is the

minus result of pair (16, 5).

 We divide an array into two sub-arrays with same size. The maximal

difference of all pairs occurs in one of the three following situations:

 (1) two numbers of a pair are both in the first sub-array;

wk12

 77099 10

 (2) two numbers of a pair are both in the second sub-array;

 (3) the minuend is in the greatest number in the first sub-array, and the

subtrahend is the least number in the second sub-array.

 we get the maximal difference of pairs in the first sub-array (leftDiff), and then

get the maximal difference of pairs in the second sub-array (rightDiff). We

continue to calculate the difference between the maximum in the first sub-

array and the minimal number in the second sub-array (crossDiff). The

greatest value of the three differences is the maximal difference of the whole

array.

 Analysis:

 T(n)=2(n/2)+O(1).

 solving we get

 time complexity is O(n)

13. (a) (i) Given the mobile numeric keypad. You can only press buttons that
are up, left, right or down to the first number pressed to obtain the
subsequent numbers. You are not allowed to press bottom row
corner buttons (i.e. and #). Given a number N, how many key
strokes will be involved to press the given number. What is the
length of it? Which dynamic programming technique could be used
to find solution for this? Explain each step with the help of a pseudo
code and derive its time complexity. (12)

 (ii) How do you construct a minimum spanning tree using Kruskal’s
algorithm? Explain. (4)

 Answer: 13(a)(i): [Analysis of the problem+ recurrence equation: 8 Marks,
Complexity Analysis: 4 Marks]

 For N=1, number of possible numbers would be 10 (0, 1, 2, 3, …., 9)

 For N=2, number of possible numbers would be 36

 Possible numbers: 00,08 11,12,14 22,21,23,25 and so on.

 If we start with 0, valid numbers will be 00, 08 (count: 2)

 If we start with 1, valid numbers will be 11, 12, 14 (count: 3)

 If we start with 2, valid numbers will be 22, 21, 23,25 (count: 4)

 If we start with 3, valid numbers will be 33, 32, 36 (count: 3)

 If we start with 4, valid numbers will be 44,41,45,47 (count: 4)

wk12

 77099 11

 If we start with 5, valid numbers will be 55,54,52,56,58 (count: 5)

 If we start with 6, valid numbers will be 66, 63, 65,69 (count: 4)

 If we start with 7, valid numbers will be 77,74,78 (count: 3)

 If we start with 8, valid numbers will be 88,85,80,87,89 (count: 5)

 If we start with 9, valid numbers will be 99,96,98 (count: 3)

 Mobile Keypad is a rectangular grid of 4X3 (4 rows and 3 columns)

 Lets say Count(i, j, N) represents the count of N length numbers

starting from position (i, j)

 If N = 1

 Count(i, j, N) = 10

 Else

 Count(i, j, N) = Sum of all Count(r, c, N-1) where (r, c) is new

position after valid move of length 1 from current position (i, j).

 Travelsal for N=4 from key 8

 Complexity Analysis: O(n).

 13(a)(ii) Kruskal’s algorithm [4 Marks]

wk12

 77099 12

 Procedure:

 1. First we examine the edges of G in order of increasing weight.

 2. Then we select an edge (u, v)∊ E of minimum weight and checks whether its

end points belongs to same component or different connected

components.

 3. If u and v belongs to different connected components then we add it to set A,

 otherwise it is rejected because it create a cycle.

 4. The algorithm stops, when only one connected components remains (i.e. all

the vertices of G have been reached).

Or

 (b) (i) Let }19/,92/,77/,72/,283/,247/,96/,119/{ jkfhgcmlA be the

letters and its frequency of distribution in a text file. Compute a
suitable Huffman coding to compress the data effectively. (8)

 (ii) Write an algorithm to construct the optimal binary search tree
given the roots),(jir , nji 0 . Also prove that this could be

performed in time)(nO . (8)

 Answer: (b)(i)Total number of letters: 1005

 Frequency is:

 L m c g h f k j

 0.2 0.1 0.25 0.28 0.07 0.07 0.09 0.02

 110 001 01 10 0001 1110 1111 0000

wk12

 77099 13

wk12

 77099 14

 (b)(ii) root table [4 marks] + [Algorithm 4 Marks]

wk12

 77099 15

wk12

 77099 16

14. (a) (i) Maximize zyxp 32 (8)

subject to

.0,0,0

10

102

40

zyx

zy

zyx

zyx

 (ii) Write down the optimality condition and algorithmic
implementation for finding M-augmenting paths in bipartite
graphs. (8)

 Answer:

 14(a)(i) The first constraint is

 x + y + z ≤ 40.

 To turn it into an equation, we must add a slack variable s to the left-

hand side, getting

 x + y + z + s = 40.

 The next constraint is 2x + y - z ≥ 10,

 and we must subtract the surplus variable t to the left-hand side, getting

 2x + y - z - t = 10.

 The last constraint is - y + z ≥ 10,

 and we must subtract the surplus variable u to the left-hand side, getting

 - y + z - u = 10.

 Finally, the objective is

 p = 2x + 3y + z.

 We must subtract 2x + 3y + z from both sides to get the desired equation:

 -2x - 3y - z + p = 0.

 Tableau #1

 x y z s t u p

 1 1 1 1 0 0 0 40

 2 1 -1 0 -1 0 0 10

 0 -1 1 0 0 -1 0 10

 -2 -3 -1 0 0 0 1 0

 Tableau #2

 x y z s t u p

 0 0.5 1.5 1 0.5 0 0 35

 1 0.5 -0.5 0 -0.5 0 0 5

 0 -1 1 0 0 -1 0 10

 0 -2 -2 0 -1 0 1 10

wk12

 77099 17

 Tableau #3

 x y z s t u p

 0 2 0 1 0.5 1.5 0 20

 1 0 0 0 -0.5 -0.5 0 10

 0 -1 1 0 0 -1 0 10

 0 -4 0 0 -1 -2 1 30

 Tableau #4

 x y z s t u p

 0 1 0 0.5 0.25 0.75 0 10

 1 0 0 0 -0.5 -0.5 0 10

 0 0 1 0.5 0.25 -0.25 0 20

 0 0 0 2 0 1 1 70

 Optimal Solution: p = 70; x = 10, y = 10, z = 20

 14(a)(ii) [Condition Explanation 4 Marks and Algorithm 4 Marks]

 A maximum matching—more precisely, a maximum cardinality matching—is a

matching with the largest number of edges. We limit our discussion in

this section to the simpler case of bipartite graphs. In a bipartite graph,

all the vertices can be partitioned into two disjoint sets V and U, not

necessarily of the same size, so that every edge connects a vertex in one

of these sets to a vertex in the other set. In other words, a graph is

bipartite if its vertices can be colored in two colors so that every edge has

its vertices colored in different colors; such graphs are also said to be 2-

colorable. A matching M is a maximum matching if and only if there

exists no augmenting path with respect to M

 Given a matching M, an M-alternating path is a path that alternates

between edges in M and edges not in M. An M-alternating path P that

begins and ends at vertices not covered by M is an M-augmenting path;

wk12

 77099 18

Or

 (b) (i) Briefly describe on the Stable marriage problem. (6)

 (ii) How do you compute maximum flow for the following graph using
Ford-Fulkerson method? (10)

wk12

 77099 19

Answer: (b)(i) [Algorithm and discussion 6 Marks]

Stable marriage algorithm

Input: A set of n men and a set of n women along with rankings of the women by
each man and rankings of the men by each woman with no ties allowed in the
rankings

Output: A stable marriage matching

1. Start with all the men and women being free.

2. While there are free men, arbitrarily select one of them and do the following:

 Proposal The selected free man m proposes to w, the next woman on

 his preference list (who is the highest-ranked woman who has not

 rejected him before).

Response If w is free, she accepts the proposal to be matched with m.
If she is not free, she compares m with her current mate. If she
prefers m to him, she accepts m’s proposal, making her former mate
free; otherwise, she simply rejects m’s proposal, leaving m free.

3. Return the set of n matched pairs.

14(b)(ii) Ford Fulkerson Method: Algorithm with an example [6 + 4 Marks]

15. (a) (i) Suggest an approximation algorithm for traveling salesperson
problem. Assume that the cost function satisfies the triangle
inequality. (8)

 (ii) Explain how job assignment problem could be solved, given n tasks
and n agents where each agent has a cost to complete each task,
using Branch and Bound technique. (8)

 Answer:

wk12

 77099 20

 15(a)(i) Greedy Algorithms for the TSP: [Algorithm with example 6 marks,

inequality 2 marks]

 The simplest approximation algorithms for the traveling salesman problem

are based on the greedy technique.

 Nearest-neighbor algorithm [always go next to the nearest unvisited city]

 Step 1 Choose an arbitrary city as the start.

 Step 2 Repeat the following operation until all the cities have been visited:

 go to the unvisited city nearest the one visited last (ties can be broken

 arbitrarily).

 Step 3 Return to the starting city.

15(a)(ii) [Explanation 4 Marks, Example 4 Marks]

 Let us illustrate the branch-and-bound approach by applying it to the

problem of assigning n people to n jobs so that the total cost of the

assignment is as small as possible. Compare the lower bounds of the live

nodes. It is sensible to consider a node with the best bound as most

promising. Best first Branch and Bound.

Example

wk12

 77099 21

Or

 (b) (i) The knight is placed on the first block of an empty board and,
moving according to the rules of chess, must visit each square
exactly once. Solve the above problem using backtracking
procedure. (10)

 (ii) Implement an algorithm for Knapsack problem using NP-Hard
approach. (6)

 Answer:

 15(b)(i) Knight’s Tour Algorithm: [Explanation 4 Marks, Solution 4 Marks]

 we start from an empty solution vector and one by one add items Knight’s

move. When we add an item, we check if adding the current item violates

the problem constraint, if it does then we remove the item and try other

alternatives. If none of the alternatives work out then we go to previous

stage and remove the item added in the previous stage

 Algorithm:

 If all squares are visited

 print the solution

 Else

 a) Add one of the next moves to solution vector and recursively

 check if this move leads to a solution. (A Knight can make maximum

 eight moves. We choose one of the 8 moves in this step).

 b) If the move chosen in the above step doesn't lead to a solution

 then remove this move from the solution vector and try other

 alternative moves.

wk12

 77099 22

 c) If none of the alternatives work then return false (Returning false

 will remove the previously added item in recursion and if false is

 returned by the initial call of recursion then "no solution exists")

Knight’s tour in a Chess Board:

0 59 38 33 30 17 8 63

37 34 31 60 9 62 29 16

58 1 36 39 32 27 18 7

35 48 41 26 61 10 15 28

42 57 2 49 40 23 6 19

47 50 45 54 25 20 11 14

56 43 52 3 22 13 24 5

51 46 55 44 53 4 21 12

 (b)(ii) Greedy Algorithms for the Knapsack Problem [Algorithm 5 Marks, Example 3

marks]

 One is to select the items in decreasing order of their weights; however,

heavier items may not be the most valuable in the set. Alternatively, if

we pick up the items in decreasing order of their value, there is no

guarantee that the knapsack’s capacity will be used efficiently. We can,

by computing the value-to-weight ratios vi/wi, where ,i= 1, 2,...,n,and

selecting the items in decreasing order of these ratios. (

 Step 1 Compute the value-to-weight ratios ri= vi/wi , where i=1,...,n, for the

 items given.

 Step 2 Sort the items in non increasing order of the ratios computed in Step 1.

 Step 3 Repeat the following operation until no item is left in the sorted list:

 if the current item on the list fits into the knapsack, place it in the knapsack

and proceed to the next item; otherwise, just proceed to the next item.

——————

