
Branch & Bound Algorithms

S Kavitha
AP/CSE
SSNCE

Topics

• Define branch & bound
• 0-1 Knapsack problem

– Breadth-First Search
– Best-First Search– Best-First Search

• Assignment Problem

Introduction
• The branch-and-bound design strategy is very similar to

backtracking in that a state space tree is used to solve a
problem.

• The differences from backtracking is that
(1) does not limit us to any particular way of traversing (1) does not limit us to any particular way of traversing
the tree
(2) is used only for optimization problems.

• A branch-and-bound algorithm computes a number (bound)
at a node to determine whether the node is promising.

Introduction …

• The number is a bound on the value of the solution
that could be obtained by expanding beyond the node.

• If that bound is no better than the value of the best
solution found so far, the node is nonpromising.
Otherwise, it is promising.
solution found so far, the node is nonpromising.
Otherwise, it is promising.

• This approach is called best-first search with branch-
and-bound pruning. The implementation of this
approach is a modification of the breadth-first search
with branch-and-bound pruning.

Branch and Bound

• An enhancement of backtracking
• Applicable to optimization problems
• Uses a lower bound or upper bound for

the value of the objective function for each the value of the objective function for each
node (partial solution) so as to:
– guide the search through state-space
– rule out certain branches as “unpromising”

Breadth-first Search

• We can implement this search using a queue.

• All child nodes are placed in the queue for later
processing if they are promising.

• Calculate an integer value for each node that
represents the maximum possible profit if we pick that
node.

• If the maximum possible profit is not greater than the
best total so far, don’t expand the branch.

Breadth-first Search

• The breadth-first search strategy has no advantage over a
depth-first search (backtracking).

• However, we can improve our search by using our bound
to do more than just determine whether a node is to do more than just determine whether a node is
promising.

Best-first Search

• Best-first search expands the node with
the best bounds next.

• How would you implement a best-first
search?
– Depth-first is a stack
– Breadth-first is a queue
– Best-first is a ???

0-1 Knapsack – Problem
Statement

�Input: Weight of N items {w1, w2, ..., wn}
Cost of N items {v1, v2, ..., vn}
Knapsack limit W

�Output: Selection for knapsack: {x1,x2,…xn}
where xi ∈{0,1}.

0-1 Knapsack – given problem

• Capacity W is 10
• Upper bound is $100

Item Weight Value Value / weight

1 4 $40 10

2 7 $42 6

3 5 $25 5

4 3 $12 4

Computing Upper Bound

• To compute the upper bound, use
– ub = v + (W – w)(vi+1/wi+1)

• So the maximum upper bound is
– pick no items, take maximum profit item– pick no items, take maximum profit item
– ub = (10 – 0)*($10) = $100

• After we pick item 1, we calculate the upper bound as
– all of item 1 (4, $40) + partial of item 2 (7, $42)
– $40 + (10-4)*6 = $76

• If we don’t pick item 1:
– ub = (10 – 0) * ($6) = $60

State Space Tree
w = 0 , v = 0
 ub = 100

w = 4 , v = 40
 ub = 76 w = 0 , v = 0

 ub = 60

w = 11 w = 4 , v = 40

0

1

3

2

4

with 1 without 1

with 2 without 2

inferior to

w = 11

w = 4 , v = 40
 ub = 70

w = 9 , v = 65
 ub = 69 w = 4 , v = 40

 ub = 64

w = 12

w = 9 , v = 65
 ub = 65

without 3with 3

with 4 without 4

5
6

7 8

inferior to
node 8

not feasible

not feasible

inferior to
node 8

optimal solution

Bounding
• A bound on a node is a guarantee that any solution obtained

from expanding the node will be:
– Greater than some number (lower bound)
– Or less than some number (upper bound)

• If we are looking for a maximal optimal (knapsack), then we • If we are looking for a maximal optimal (knapsack), then we
need an upper bound
– For example, if the best solution we have found so far has a profit of 12

and the upper bound on a node is 10 then there is no point in expanding
the node

• The node cannot lead to anything better than a 10

Bounding

• Recall that we could either perform a depth-first or a
breadth-first search
– Without bounding, it didn’t matter which one we used because we

had to expand the entire tree to find the optimal solution
– Does it matter with bounding?

• Hint: think about when you can prune via bounding• Hint: think about when you can prune via bounding

Bounding

• We prune (via bounding) when:
(currentBestSolutionCost >= nodeBound)

• This tells us that we get more pruning if:
– The currentBestSolution is high– The currentBestSolution is high
– And the nodeBound is low

• So we want to find a high solution quickly and we want the
highest possible upper bound
– One has to factor in the extra computation cost of computing higher

upper bounds vs. the expected pruning savings

The assignment problem

• We want to assign n people to n jobs so
that the total cost of the assignment is as
small as possible (lower bound)

Scheduling Problem

Input of the problem:

� A number of resources

� A number of tasks

Output of the problem:

� A sequence of feeding the tasks to resources

to minimize the required processing time

Select one element in each row of the cost matrix Select one element in each row of the cost matrix CC so that: so that:
•• no two selected elements are in the same column; and no two selected elements are in the same column; and
•• the sum is the sum is minimizedminimized

For exampleFor example::

Example: The assignment
problem

For exampleFor example::
Job 1 Job 2 Job 3 Job 4

Person a 9 2 7 8
Person b 6 4 3 7
Person c 5 8 1 8
Person d 7 6 9 4

Lower Lower boundbound: Any solution to this problem will have : Any solution to this problem will have
total cost of total cost of at leastat least: :

sum of the smallest element in each row = 10

Assignment problem: lower
bounds

State-space levels 0, 1, 2

Complete state-space

Summary: Branch and bound

– Feasible solution
– Optimal solution
– Breadth-First Search
– Best-First Search (with branch-and-bound

pruning)

Backtracking - Hamiltonian
Circuit Problem

• A Hamiltonian circuit or tour of a graph is a
path that starts at a given vertex, visits
each vertex in the graph exactly once, and
ends at the starting vertex. ends at the starting vertex.

• Some graphs do not contain Hamiltonian
circuits.

Hamiltonian Circuits Problem ?

v1 v2

v6v4 v5

v3 v1 v2

v6v4 v5

v3

v6v4 v5 v6v4 v5

Example

v1 v2 v3

v5 v6 v7

v4

v8

1

2 5

5 7 2 6

state space tree

graph

6

4 8

7 3

3

3 8 4

:
:

:
:

Example
• Hamiltonian Circuit

– [v1, v2, v8, v7, v6, v5, v4, v3, v1]

26

Example

Questions?

