Backtracking

V. Balasubramanian

Introduction

» introduce two algorithm design techniques—
backtracking and branch-and-bound—that often make
it possible to solve at least

» some large instances of difficult combinatorial problems.
Both strategies can be

» considered an improvement over exhaustive search,

» The name first coined by D.H. Lehmer

2 Algorithms (eadeli@iust.ac.ir)

Tackling Difficult Combinatorial Problems

There are two principal approaches to tackling difficult
combinatorial problems (NP-hard problems):

» Use a strategy that guarantees solving the problem
exactly but doesn’t guarantee to find a solution in
polynomial time

» Use an approximation algorithm that can find an
approximate (sub-optimal) solution in polynomial time

v

v

v

Exact Solution Strategies

exhaustive search (brute force)

useful only for small instances

dynamic programming

applicable to some problems (e.g., the knapsack problem)

backtracking
eliminates some unnecessary cases from consideration

yields solutions in reasonable time for many instances but worst
case is still exponential

branch-and-bound

further refines the backtracking idea for optimization problems

Backtracking

» Construct the state-space tree

nodes: partial solutions

edges: choices in extending partial solutions

» Explore the state space tree using depth-first search

» “Prune” nonpromising nodes

dfs stops exploring subtrees rooted at nodes that cannot
lead to a solution and backtracks to such a node’s parent to
continue the search

» Basic idea of backtracking

» *» Desired solution expressed as an n-tuple (x1,x2,...,xn)
where xi are chosen from

» some set Si
» — If |Si|=mi, m=mIm2..mn candidates are possible
» * Brute force approach

» — Forming all candidates, evaluate each one, and saving the
optimum one

6 Algorithms (eadeli@iust.ac.ir)

Backtracking
*Yielding the same answer with far fewer than m trials

“Its basic idea is to build up the solution vector one
component at a time and to use modified criterion
function Pi(xl,..,xi) (sometimes called

bounding function) to test whether the vector being
formed has any chance of success. The major advantage is:
if it is realized that the partial vector (xl,..,xi) can in no
way lead to an optimum solution, then

mi+|...mn possible test vectors can be ignored entirely.”

Based on depth-first recursive search

Algorithms (eadeli@iust.ac.ir)

Definition 1: Explicit constraints are rules that restrict each x; to take

on values only from a given set.
« example

x; =0 or S;= { all nonnegative real numbers }

X;=0orl or S;={0,1}

« All tuples satisfying the explicit constraints define a

possible solution space for I (I=problem instance)

Algorithms (eadeli@iust.ac.ir)

— Definition 2: The implicit constraints are rules that determine which
of the tuples in the solution space of 7 satisfy the criterion function.
Thus implicit constrains describe the way 1n which the x; must relate

to each other.

9 Algorithms (eadeli@iust.ac.ir)

10

?
/ Q dead end
dead end
/ /

/ ?
start ? P ‘\"dead end

\? __r deadend
™~

success!

Algorithms (eadeli@iust.ac.ir)

11

A W N

<«4+—— queenl

<4— queen 2

<4—— queen3

<€4— queen4

Algorithms (eadeli@iust.ac.ir)

State Space tree

ZIN/A N
TN T

12 Algorithms (eadeli@iust.ac.ir)

ALGORITHM Backtrack(X[1..i])

//Gives a template of a generic backtracking algorithm

[MInput: X[1..i] specifies first i promising components of a solution

//Output: All the tuples representing the problem’s solutions

if X[1../]is a solution write X[1..7]

else //see Problem 8 in the exercises

for each element x € §; . consistent with X[1..i] and the constraints do

X[i+1]«x
Backtrack(X[1..i + 1])

» 13 Algorithms (eadeli@iust.ac.ir)

>
4

v

>

v

v

N-queens:

void NQueens(int k, int n)

14

Il Using backtracking, this procedure prints all

/] possible placements of n queens on an nXn

Il chessboard so that they are nonattacking.

{

for (inti=1;i<=n;i++) {
if (Place(k, i)) {
x[k] = i;
if (k==n) { for (int j=1;j<=n;j++)
cout << x[j] <<''; cout << endl;}
else NQueens(k+1, n);
}
}

Algorithms (eadeli@iust.ac.ir)

» bool Place(int k, int i)

4
4
4

v v Vv

v

15

// Returns true if a queen can be placed in kth row and
Il ith column. Otherwise it returns false. x[] is a
I/ global array whose first (k-1) values have been set.
/[abs(r) returns the absolute value of .
{
for (intj=1;j < k; j++)
if ((x[j] ==1i) //Two in the same column
|| (abs(x[j]-i) == abs(j-k)))
Il or in the same diagonal
return(false);

return(true);

Algorithms (eadeli@iust.ac.ir)

The idea

» Maze of hedges by Hampton Court Palace

» A sequence of objects is chosen from a specified set so
that the sequence satisfies some criterion

» Example: n-Queens problem
Sequence: n positions on the chessboard
Set: n? possible positions
Criterion: no two queens can threaten each other

» Depth-first search of a tree (preorder tree traversal)

16

Depth first search

figure 5.1 ® A tree with nodes numbered according to a depth-first search.

17

The algorithm

void depth_first_tree_search (node v)

1

node u:

visit v,

for (each child u of v)
depth_first_tree_search(u);

18

4-Queens problem

» State space tree

If checking each candidate solution ...

<1,1>,<2,1><3,1>,<4,1>
<1,1>,<2,1>,<3,1>,<4,2>
<1,1>,<2/1>,<3,1>,<4,3>
<1,1>,<2,1>,<3,1>,<4,4>
<1,1>,<2,1>,<3,2>,<4,1>

20

Looking for signs for dead ends

21

Backtracking

Nonpromising node

Promising node

<

<

» Promising function

» Pruning the state space tree
<

Pruned state space tree

22

The generic algorithm

void checknode (node v)

1

node u;

if (promising(v))
if (there is a solution at wv)
write the solution;
else
for (each child u of v)
checknode(u):

23

4-Queens problem (1)

24

4-Queens problem (2)

25

4-Queens problem (3)

26

4-Queens problem (4)

(9) (h)

27

4-Queens problem (95)

(i) () (k)

28

Pruned state space tree

29

Avoid creating nonpromising nodes

void ezpand(node v)

{

node u;

for (each child u of wv)
if (promising(u)) |
if (there is a solution at u)
‘write the solution;
else
expand (u);

30

The n-Queens Problem

» Check whether two queens threaten

each other:
col(i) — col(k) =i —k INE S S S
col(i) — col(k) = k - i o i

5
JE]
7
8

Figure 5.6 ® The queen in row 6 is being threatened in its left diagonal by the queen

diagonal by the queen in row 2.

31

inrow 3 and in its right

Efficiency

» Checking the entire state space tree (number of nodes
checked)

nn—l—l -1

2 3 ... n_
l1+n+n“+n°+ +n 1

» Taking the advantage that no two queens can be placed in
the same row or in the same column

| + n+ n(n-1) + n(n-1)(n-2) + ... + n! promising nodes

32

Comparison

e Table 5.1 An illustration of how much checking is saved by backtracking in the n-Queens problem*

Number of Nodes Number of Candidate Number of Nodes Number of Nodes
Checked by Solutions Checked by Checked by Found Promising
n Algorithm 17 Algorithm 2* Backtracking by Backtracking
4 341 24 61 17
8 19,173,961 40,320 15,721 2057
12 9.73 x 102 4.79 x 10% 1.01 x 107 8.56 x 10°
14 1.20 x 10'° 8.72 x 10" 3.78 x 10° 2.74 x 107

*Entries indicate numbers of checks required to find all solutions.

TAlgorithm 1 does a depth-first search of the state space tree without backtracking.
FAlgorithm 2 generates the n! candidate solutions that place cach queen in a different row
and column.

The Sum-of-Subsets Problem

Suppose that n = 5, W = 21, and
wy =9 wo = 06 wsg = 10 wy = 11 ws = 16.
Because

w +we+w3=54+64+10=21,
wy +ws =5+ 16 = 21, and
w3—|—w4:10+11=21,

the solutions are {wy, we, w3}, {w1, ws}, and {ws, ws}.

34

State Space Tree

»w, =2,w, =4,w; =5

Figure 5.7 ® A state space tree for instances of the Sum-of-Subsets problem in which n=3.

35

When W=6and w; =2, w, =4, w; =5

36

To check whether a node is promising

» Sort the weights in nondecreasing order
» To check the node at level i

weight + w,,, > W
weight + total < W

37

When W= 13 and w;, =3, w, =4, w; =5, w, =6

Wo=4 4 0 4 0
W3=5 5 0 5 0 5 0 x
wy=6 X 5 0 X X X X

38

The algorithm 5.4

void sum_of_subsets (index i, int weight, int total){
if (promising (i)
if (weight ==W)
cout << include [|] through include [i];
else{
include [i + 1] = "yes";
sum_of_subsets (i + |, weight + w[i + 1], total - w[i + 1]);
include [i + 1] = "no";
sum_of_subsets (i + |, weight, total - w [i + 1]);
}
}

bool promising (index i);{
return (weight + total >=W) &&
(weight ==W || weight + w[i + 1] <= W);

39

Time complexity

» The first call to the function

sum_of_subsets(0, O, total) where
n
total = > w[j]
j=1

» The number of nodes checked
| +2+ 22+ +20=2m

40

Graph coloring

» The m-Coloring problem

Finding all ways to color an undirected graph using at most m
different colors, so that no two adjacent vertices are the same
color.

Usually the m-Coloring problem consider as a unique problem
for each value of m.

41

Example

» 2-coloring problem

No solution!

» 3-coloring problem

Vertex Color
vl colorl
v2 color2
v3 color3
v4 color2

42

Application: Coloring of maps

» Planar graph

It can be drawn in a plane in such a way that no two edges
cross each other.

» To every map there corresponds a planar graph

43

Example (1)

» Map

44

Example (2)

» corresponded planar graph

45

The pruned state space tree

X

X X

O,

X X

46

Algorithm 5.5 (1)

void m_coloring (index i) {

int color;
if (promising (i)
if (i ==n)
cout << vcolor [1] through vcolor [n];
else

for (color = |; color <= m; color++){
vcolor [i + 1] = color;
m_coloring (i + 1);

47

Algorithm 5.5 (2)

bool promising (index i) {
index j;
bool switch;
switch = true;
=5
while (j<i && switch){
if (W[i][j] && vcolor[i] == vcolor[j])
switch = false;
j++;

’

}

return switch;

}

48

Algorithm 5.5 (3)

» The top level call to m_coloring
m_coloring(0)
» The number of nodes in the state space tree for this
algorithm

mnrt!l — 1

l+m+m? 4. +m" =
m-—1

49

The Hamiltonian Circuits Problem

» The traveling sales person problem
Chapter 3: Dynamic programming
T(n) = (n-1)(n-2)2"3

» Hamiltonian Circuit (also called a tour)
Given a connected, undirected graph

A path that starts at a given vertex, visits each vertex in the
graph exactly once, and ends at the starting vertex

50

Example (1)

» Hamiltonian Circuit
[vl,v2,v8,v7,v6, V5, v4,v3, v2]

51

Example (2)

» No Hamiltonian Circuit!

52

Algorithm 5.6 (1)

void hamiltonian (index i) {

index j;
if (promising (i)
if (i ==n-1)
cout << vindex [0] through vindex [n - 1];
else
for (j = 2;j <=n; j++){
vindex [i + 1] =j;
hamiltonian (i + 1);
}
}

53

Algorithm 5.6 (2)

bool promising (index i) {

index j;

bool switch;

if (i == n-1 && 'W/vindex[n - 1]] [vindex [0]])
switch = false;

else if (i > 0 && !W/vindex[i - 1]] [vindex [i]])
switch = false;

else{
switch = true;
=1
while (j < i && switch){

if (vindex[i] == vindex [j])
switch = false; j++;

}

}

return switch;

54

solution

(a) (b)

FIGURE 12.3 (a) Graph. (b) State-space tree for finding a Hamiltonian circuit. The
numbers above the nodes of the tree indicate the order in which the
nodes are generated.

» bool Place(int k, int i) // Returns true if a queen can be
placed in kth row and // ith column. Otherwise it returns
false. x[] is a // global array whose first (k-1) values have
been set. // abs(r) returns the absolute value of r.{ for (int
i=1;j < k; j*++) if (x[j] == i) // Two in the same column ||
(abs(x[j]-i) == abs(j-k))) // or in the same diagonal
return(false); return(true); }

N-Queens algorithm place(int k,int i)

» bool Place(int k, int i)

» [/ Returns true if a queen can be placed in kth row and // ith column.
Otherwise it returns false. x[] is a

» /] global array whose first (k-1) values have been set.

» /] abs(r) returns the absolute value of .

A
for (intj=1;j < k; j++)
if ((x[j] ==i) //Two in the same column
|| (abs(x[j]-i) == abs(j-k)))
// or in the same diagonal

return(false);
return(true);

}

N-Queens algorithm

» void NQueens(int k, int n)

» /] Using backtracking, this procedure prints all
» /] possible placements of n queens onann X n
» /] chessboard so that they are nonattacking.

>

» for (int i=I;i<=n;i++)

> {
if (Place(k,i))
{ x[k] =i
if (k==n) { for (int j=I;j<=n;j++)
cout << x]j] << "', cout << endl;}
else NQueens(k+1,n);}}}

Sum of subsets

4
4
4
4

void SumOfSub(float s, int k, float r)
// Find all subsets of w[1:n] that sum to m. The values
I/ of X[J], 1<=j<k, have already been determined.
[l s=sigma{j=1}{k-1} w[j]*x[j] and r=sigma{j=k}*n
w[jl.
// The w[j]'s are in nondecreasing order.
/[1t is assumed that w[1]<=m and sigma{i=1}*n w[i]>=m.

{

/I Generate left child. Note that s+w[k] <=m
// because B_{k-1} Is true.
X[k] = 1;
If (s+tw[k] ==m) { // Subset found
for (int j=1, j<=k; j++) cout << X[J] << "
cout<<endl; }
// There is no recursive call here
[fasw[j] >0,1<=)<=n.
else If (s+w[k]+w[k+1] <=m)
SumOfSub(s+w[k], k+1, r-wl[k]);

Contd...

» [l Generate right child and evaluate B_k.
» If((s+r-wlk] >= m) && (stw[k+1] <=m)) {

» X[k] =0;
SumOfSub(s, k+1, r-w[k]); } }

Graph Coloring algorithm

» void mColoring(int k)

» /[This program was formed using the recursive
backtracking

» // schema. The graph is represented by its boolean
adjacency

» [/ matrix G[1:n][1:n]. All assignments of 1,2,...,m to the
/[vertices of the graph such that adjacent vertices are

» /[assigned distinct integers are printed. K is the index of
// the next vertex to color.

Contd...

» { do {// Generate all legal assignments for x[K].
NextValue(k); // Assign to x[k] a legal color.

» 1f (1x[k]) break; // No new color possible

» 1f (k==n) {// At most m colors have been used
// to color the n vertices.

» for (inti=1; i<=n; i++) cout << x[i] << '

» cout << endl: J L
» else mColoring(k+1);
» } while(1);

>}

Contd... algorithm for next color

» void NextValue(int k)
» /I X[1],..., X[k-1] have been assigned integer values in

// the range [1,m] such that adjacent vertices have distinct
I integers. A value for x[k] is determined in the range

I/ [0,m]. X[K] is assigned the next highest numbered color
// while maintaining distinctness from the adjacent vertices
I/ of vertex K. If no such color exists, then x[K] is zero.

» A

v v Vv v Vv

Contd...

» do{
» X[K] = (X[K]+1) % (m+1); // Next highest color
If ('x[K]) return; // All colors have been used.

for (int j=1; j<=n; j++) { // Check if this color is
distinct from adjacent colors.

If (G[K][j] /1T (k,) Is an edge

&& (X[K] == x[j])) // and if adj. vertices have the same color
break; }

If (j ==n+1) return; // New color found
} while (1); // Otherwise try to find another color.

>}

v Vv

v Vv

v Vv

I

Hamiltonian circuit — Next Vertex

v

void NextValue(int k)

Il X[1],...,X[k-1] is a path of k-1 distinct vertices. If

» /I X[K]==0, then no vertex has as yet been assigned to x[K].
/I After execution x[Kk] is assigned to the next highest

» /I numbered vertex which 1) does not already appear in

Il X[1],X[2],...,X[Kk-1]; and ii) is connected by an edge

/] to x[k-1]. Otherwise x[k]==0. If k==n, then

// in addition x[k] is connected to x[1].

» A

v

v

v

v Vv

Contd...

>

v v Vv Vv

v Vv vV VvV vV v

do {
X[K] = (x[k]+1) % (n+1); // Next vertex
If ('X[K]) return;
If (G[X[k-1]1[X[K]]) { // Is there an edge?

for (int j=1; j<=k-1; j++) if (X[j]==X[K]) break;

Check for distinctness.
If (j==K) // If true, then the vertex is distinct.
It ((k<n) || ((k==n) && G[x[n]][x[1]]))
return;
¥
} while(1);
by

Il

Contd...

void Hamiltonian(int k)

» /] This program uses the recursive formulation of
» I/ backtracking to find all the Hamiltonian cycles
» /[of agraph. The graph is stored as an adjacency
» /' matrix G[1:n][1:n]. All cycles begin at node 1.
|

» do {// Generate values for Xx[K].

» NextValue(k); // Assign a legal next value to x[K].
b if ('x[K]) return;

v

> if (k==n){

> for (int i=1; i<=n; i++) cout << x[i] <<"'";
> cout << "1\n";

g }

> else Hamiltonian(k+1);

> } while (1);

