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Analysis of algorithms

 Issues:

• correctness

• time efficiency

• space efficiency

• optimality

 Approaches:

• theoretical analysis

• empirical analysis
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Theoretical analysis of time efficiency

Time efficiency is analyzed by determining the number of 

repetitions of the basic operation as a function of input size

 Basic operation: the operation that contributes most 

towards the running time of the algorithm

T(n) ≈ copC(n)

running time execution time

for basic operation

Number of times 

basic operation is 

executed

input size
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Input size and basic operation examples

Problem Input size measure Basic operation

Searching for key in a 

list of n items

Number of list’s items,  

i.e. n
Key comparison

Multiplication of two 

matrices

Matrix dimensions or 

total number of elements

Multiplication of two 

numbers

Checking primality of 

a given integer n

n’size = number of digits 

(in binary representation)
Division

Typical graph problem #vertices and/or edges
Visiting a vertex or 

traversing an edge
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Empirical analysis of time efficiency

 Select a specific (typical) sample of inputs

 Use physical unit of time (e.g.,  milliseconds)

or

Count actual number of basic operation’s executions

 Analyze the empirical data
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Best-case, average-case, worst-case

For some algorithms efficiency depends on form of input:

 Worst case:    Cworst(n) – maximum over inputs of size n

 Best case:        Cbest(n) – minimum over inputs of size n

 Average case:  Cavg(n) – “average” over inputs of size n

• Number of times the basic operation will be executed on typical  input

• NOT the average of worst and best case

• Expected number of basic operations considered as a random variable 

under some assumption about the probability distribution of all 

possible inputs
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Example: Sequential search

 Worst case

 Best case

 Average case
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Types of formulas for basic operation’s count

 Exact formula

e.g., C(n) = n(n-1)/2

 Formula indicating order of growth with specific 

multiplicative constant

e.g., C(n) ≈ 0.5 n2

 Formula indicating order of growth with unknown 

multiplicative constant

e.g., C(n) ≈ cn2
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Order of growth 

 Most important: Order of growth within a constant multiple 

as n→∞

 Example:

• How much faster will algorithm run on computer that is 

twice as fast?

• How much longer does it take to solve problem of double 

input size?
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Values of some important functions as n 
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Asymptotic order of growth

A way of comparing functions that ignores constant factors and 

small input sizes

 O(g(n)): class of functions f(n) that grow no faster than g(n)

 Θ(g(n)): class of functions f(n) that grow at same rate as g(n)

 Ω(g(n)): class of functions f(n) that grow at least as fast as g(n)
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Big-oh
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Big-omega
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Big-theta
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Establishing order of growth using the definition

Definition: f(n) is in O(g(n)) if order of growth of  f(n) ≤ order  

of growth of g(n) (within constant multiple),

i.e., there exist positive constant c and non-negative integer 

n0 such that

f(n) ≤ c g(n) for every n ≥ n0 

Examples:

 10n is O(n2)

 5n+20 is O(n)
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Some properties of asymptotic order of growth

 f(n)  O(f(n))

 f(n)  O(g(n)) iff g(n) (f(n))

 If f (n)  O(g (n)) and g(n)  O(h(n)) , then f(n)  O(h(n)) 

Note similarity with a ≤ b

 If f1(n)  O(g1(n)) and f2(n)  O(g2(n)) , then

f1(n) + f2(n)  O(max{g1(n), g2(n)}) 
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Comparisons
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Establishing order of growth using limits

lim T(n)/g(n) = 

0 order of growth of T(n) <  order of growth of g(n)

c > 0 order of growth of T(n) = order of growth of g(n)

∞ order of growth of T(n) >  order of growth of g(n)

Examples:

• 10n vs.             n2

• n(n+1)/2        vs.             n2

n→∞
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L’Hôpital’s rule and Stirling’s formula

L’Hôpital’s rule:  If limn f(n) = limng(n) =  and 

the derivatives f´, g´ exist, then

Stirling’s formula:  n!  (2n)1/2 (n/e)n

f(n)

g(n)
lim
n

= 
f ´(n)

g ´(n)
lim
n

Example:  log n vs. n

Example:  2n vs. n!
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Orders of growth of some important functions

 All logarithmic functions loga n belong to the same class
(log n) no matter what the logarithm’s base a > 1 is

 All polynomials of the same degree k belong to the same class: 
akn

k + ak-1n
k-1 + … + a0  (nk) 

 Exponential functions an have different orders of growth for 
different a’s

 order log n  < order n (>0)  < order an < order n! < order nn
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Basic asymptotic efficiency classes

1 constant

log n logarithmic

n linear

n log n n-log-n

n2 quadratic

n3 cubic

2n exponential

n! factorial
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Check the assertions?
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Prove that it is in increasing order
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Magic Square
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Maximum Rule
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Conditional asymptotic notation

 Many algorithms easier to analyse if initially we restrict our 

attention to instances whose size satisfies a certain 

condition, such as a power of 2.
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Contd…
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Contd…
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Contd…
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Contd…


