Analysis of algorithms

Issues:

- **correctness**
- **time efficiency**
- **space efficiency**
- **optimality**

Approaches:

- **theoretical analysis**
- **empirical analysis**

Theoretical analysis of time efficiency

Time efficiency is analyzed by determining the number of repetitions of the *basic operation* **as a function of** *input size*

 *Basic operation***: the operation that contributes most towards the running time of the algorithm**

input size

running time execution time for basic operation

Number of times basic operation is executed

Input size and basic operation examples

Empirical analysis of time efficiency

Select a specific (typical) sample of inputs

- **Use physical unit of time (e.g., milliseconds) or Count actual number of basic operation's executions**
- **Analyze the empirical data**

Best-case, average-case, worst-case

For some algorithms efficiency depends on form of input:

A Worst case: $C_{\text{worst}}(n)$ – maximum over inputs of size *n*

8 Best case: $C_{\text{best}}(n)$ – minimum over inputs of size *n*

Average case: $C_{\text{avg}}(n) -$ "average" over inputs of size *n*

- **Number of times the basic operation will be executed on typical input**
- **NOT the average of worst and best case**
- **Expected number of basic operations considered as a random variable under some assumption about the probability distribution of all possible inputs**

Example: Sequential search

```
ALGORITHM SequentialSearch(A[0..n-1], K)
```

```
//Searches for a given value in a given array by sequential search
//Input: An array A[0..n-1] and a search key K
//Output: The index of the first element of A that matches Kor -1 if there are no matching elements
\frac{1}{2}i \leftarrow 0while i < n and A[i] \neq K do
    i \leftarrow i + 1if i < n return ielse return -1
```
Worst case

Best case

Average case

Types of formulas for basic operation's count

 Exact formula e.g., $C(n) = n(n-1)/2$

 Formula indicating order of growth with specific multiplicative constant e.g., $C(n) ≈ 0.5 n^2$

 Formula indicating order of growth with unknown multiplicative constant $\overline{C(n)} \approx \overline{cn^2}$

Order of growth

 Most important: Order of growth within a constant multiple as *n***→∞**

- **Example:**
	- **How much faster will algorithm run on computer that is twice as fast?**

• **How much longer does it take to solve problem of double input size?**

Values of some important functions as $n \to \infty$

Values (some approximate) of several functions important Table 2.1 for analysis of algorithms

Asymptotic order of growth

A way of comparing functions that ignores constant factors and small input sizes

- Q $Q(g(n))$: class of functions $f(n)$ that grow no faster than $g(n)$
- **Θ(***g***(***n***)): class of functions** *f***(***n***) that grow at same rate as** *g***(***n***)**
- Q **^{** Q **}** $(g(n))$ **: class of functions** $f(n)$ **that grow at least as fast as** $g(n)$

H

O -notation

DEFINITION A function $t(n)$ is said to be in $O(g(n))$, denoted $t(n) \in O(g(n))$, if $t(n)$ is bounded above by some constant multiple of $g(n)$ for all large n, i.e., if there exist some positive constant c and some nonnegative integer n_0 such that

 $t(n) \leq c g(n)$ for all $n \geq n_0$.

Big-omega

H

Ω -notation

DEFINITION A function $t(n)$ is said to be in $\Omega(g(n))$, denoted $t(n) \in \Omega(g(n))$, if $t(n)$ is bounded below by some positive constant multiple of $g(n)$ for all large n, i.e., if there exist some positive constant c and some nonnegative integer n_0 such that

 $t(n) \ge cg(n)$ for all $n \ge n_0$.

Big-theta

E

Θ -notation

DEFINITION A function $t(n)$ is said to be in $\Theta(g(n))$, denoted $t(n) \in \Theta(g(n))$, if $t(n)$ is bounded both above and below by some positive constant multiples of $g(n)$ for all large n, i.e., if there exist some positive constants c_1 and c_2 and some nonnegative integer n_0 such that

 $c_2 g(n) \le t(n) \le c_1 g(n)$ for all $n \ge n_0$.

Establishing order of growth using the definition

Definition: $f(n)$ is in $O(g(n))$ if order of growth of $f(n)$ ≤ order **of growth of** *g***(***n***) (within constant multiple), i.e., there exist positive constant** *c* **and non-negative integer** *n***0 such that**

 $f(n) \leq c g(n)$ for every $n \geq n_0$

Examples: Ω 10*n* is $O(n^2)$

5*n***+20 is O(***n***)**

Some properties of asymptotic order of growth $\partial_{\alpha} f(n) \in O(f(n))$ $\partial_{\alpha} f(n) \in O(g(n))$ iff $g(n) \in \Omega(f(n))$ $\partial_{\Omega} \text{ If } f(n) \in O(g(n))$ and $g(n) \in O(h(n))$, then $f(n) \in O(h(n))$ **Note similarity with** *a ≤* **b** \mathcal{R} If $f_1(n) \in O(g_1(n))$ and $f_2(n) \in O(g_2(n))$, then $f_1(n) + f_2(n) \in \text{O}(\max\{g_1(n), g_2(n)\})$

2-17

Example 1.11 The function $3n + 2 = O(n)$ as $3n + 2 \le 4n$ for all $n \ge 2$. $3n+3 = O(n)$ as $3n+3 \le 4n$ for all $n \ge 3$. $100n+6 = O(n)$ as $100n+6 \leq 101n$ for all $n \geq 6$. $10n^2+4n+2 = O(n^2)$ as $10n^2+4n+2 \leq 11n^2$ for all $n \ge 5$. $1000n^2 + 100n - 6 = O(n^2)$ as $1000n^2 + 100n - 6 \le 1001n^2$ for $n \ge 100$. $6 * 2^n + n^2 = O(2^n)$ as $6 * 2^n + n^2 \le 7 * 2^n$ for $n \ge 4$. $3n + 3 = O(n^2)$ as $3n+3 \leq 3n^2$ for $n \geq 2$. $10n^2+4n+2 = O(n^4)$ as $10n^2+4n+2 \leq 10n^4$ for $n \geq 2$. $3n + 2 \neq O(1)$ as $3n + 2$ is not less than or equal to c for any constant c and all $n \ge n_0$. $10n^2 + 4n + 2 \ne O(n)$.

Example 1.12 The function $3n + 2 = \Omega(n)$ as $3n + 2 \ge 3n$ for $n \ge 1$ (the inequality holds for $n \geq 0$, but the definition of Ω requires an $n_0 > 0$). $3n+3 = \Omega(n)$ as $3n+3 \ge 3n$ for $n \ge 1$. $100n+6 = \Omega(n)$ as $100n+6 \ge 100n$ for $n \ge 1$. $10n^2 + 4n + 2 = \Omega(n^2)$ as $10n^2 + 4n + 2 \ge n^2$ for $n \ge 1$. $6 * 2^n + n^2 = \Omega(2^n)$ as $6 * 2^n + n^2 \geq 2^n$ for $n \geq 1$. Observe also that $3n+3 = \Omega(1), 10n^2 + 4n + 2 = \Omega(n), 10n^2 + 4n + 2 = \Omega(1), 6 * 2^n + n^2 =$ $\Omega(n^{100}), 6*2^n + n^2 = \Omega(n^{50.2}), 6*2^n + n^2 = \Omega(n^2), 6*2^n + n^2 = \Omega(n),$ and $6 * 2^n + n^2 = \Omega(1)$. \Box

Example 1.13 The function $3n + 2 = \Theta(n)$ as $3n + 2 \ge 3n$ for all $n \ge 2$ and $3n + 2 \le 4n$ for all $n \ge 2$, so $c_1 = 3$, $c_2 = 4$, and $n_0 = 2$. $3n + 3 = \Theta(n)$, $10n^2 + 4n + 2 = \Theta(n^2), 6 * 2^n + n^2 = \Theta(2^n),$ and $10 * \log n + 4 = \Theta(\log n).$ $3n+2 \neq \Theta(1), 3n+3 \neq \Theta(n^2), 10n^2+4n+2 \neq \Theta(n), 10n^2+4n+2 \neq \Theta(1),$ $6 * 2^n + n^2 \neq \Theta(n^2)$, $6 * 2^n + n^2 \neq \Theta(n^{100})$, and $6 * 2^n + n^2 \neq \Theta(1)$.

Comparisons

H

AN

H

Establishing order of growth using limits

 n^2

 n^2

0 order of growth of $T(n) <$ order of growth of $g(n)$

 $c > 0$ order of growth of $T(n) =$ order of growth of $g(n)$

∞ order of growth of *T***(***n)* > order of growth of *g***(***n***)**

Examples: • 10*n* **vs.**

• $n(n+1)/2$ vs.

L'Hôpital's rule and Stirling's formula

L'Hôpital's rule: If $lim_{n\to\infty} f(n) = lim_{n\to\infty} g(n) = \infty$ and **the derivatives** *f***´,** *g***´ exist, then**

$$
\lim_{n\to\infty}\frac{f(n)}{g(n)} = \lim_{n\to\infty}\frac{f'(n)}{g'(n)}
$$

Example: log *n* **vs.** *n*

Stirling's formula: $n! \approx (2\pi n)^{1/2} (n/e)^n$ **Example: 2** *ⁿ* **vs.** *n***!**

Orders of growth of some important functions

- **All logarithmic functions log***a n* **belong to the same class (b)** θ (log *n*) no matter what the logarithm's base $a > 1$ is
- **All polynomials of the same degree** *k* **belong to the same class:** $a_k n^k + a_{k-1} n^{k-1} + \ldots + a_0 \in \Theta(n^k)$
- **A** Exponential functions a^n have different orders of growth for **different** *a***'s**

a order $\log n < \text{order } n^{\alpha}$ ($\alpha > 0$) < order $a^n < \text{order } n! < \text{order } n^n$

Definition 1.7 [Little "oh"] The function $f(n) = o(g(n))$ (read as "f of n is little oh of g of n ") iff

$$
\lim_{n\to\infty}\frac{f(n)}{g(n)} ~=~ 0
$$

Definition 1.8 [Little omega] The function $f(n) = \omega(g(n))$ (read as "f of *n* is little omega of g of n ") iff

$$
\lim_{n\to\infty}\frac{g(n)}{f(n)} ~=~ 0
$$

Basic asymptotic efficiency classes

S

Compare the orders of growth of $\frac{1}{2}n(n-1)$ and n^2 . (This is one of **EXAMPLE 1** the examples we used at the beginning of this section to illustrate the definitions.)

$$
\lim_{n \to \infty} \frac{\frac{1}{2}n(n-1)}{n^2} = \frac{1}{2} \lim_{n \to \infty} \frac{n^2 - n}{n^2} = \frac{1}{2} \lim_{n \to \infty} (1 - \frac{1}{n}) = \frac{1}{2}.
$$

Since the limit is equal to a positive constant, the functions have the same order of growth or, symbolically, $\frac{1}{2}n(n-1) \in \Theta(n^2)$.

EXAMPLE 2 Compare the orders of growth of $\log_2 n$ and \sqrt{n} . (Unlike Example 1, the answer here is not immediately obvious.)

$$
\lim_{n \to \infty} \frac{\log_2 n}{\sqrt{n}} = \lim_{n \to \infty} \frac{(\log_2 n)'}{(\sqrt{n})'} = \lim_{n \to \infty} \frac{(\log_2 e) \frac{1}{n}}{\frac{1}{2\sqrt{n}}} = 2 \log_2 e \lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0.
$$

Since the limit is equal to zero, $\log_2 n$ has a smaller order of growth than \sqrt{n} . (Since $\lim_{n\to\infty} \frac{\log_2 n}{\sqrt{n}} = 0$, we can use the so-called *little-oh notation*: $\log_2 n \in o(\sqrt{n})$.

EXAMPLE 3 Compare the orders of growth of $n!$ and 2^n . (We discussed this informally in Section 2.1.) Taking advantage of Stirling's formula, we get

$$
\lim_{n\to\infty}\frac{n!}{2^n}=\lim_{n\to\infty}\frac{\sqrt{2\pi n}\left(\frac{n}{e}\right)^n}{2^n}=\lim_{n\to\infty}\sqrt{2\pi n}\frac{n^n}{2^ne^n}=\lim_{n\to\infty}\sqrt{2\pi n}\left(\frac{n}{2e}\right)^n=\infty.
$$

Check the assertions?

H

a. $n(n+1)/2 \in O(n^3)$ is true.

b.
$$
n(n+1)/2 \in O(n^2)
$$
 is true.

c. $n(n+1)/2 \in \Theta(n^3)$ is false. d. $n(n+1)/2 \in \Omega(n)$ is true.

HE.

- 3. For each of the following functions, indicate the class $\Theta(g(n))$ the function belongs to. (Use the simplest $g(n)$ possible in your answers.) Prove your assertions. b. $\sqrt{10n^2+7n+3}$ a. $(n^2+1)^{10}$ c. $2n \lg(n+2)^2 + (n+2)^2 \lg\frac{n}{2}$ d. $2^{n+1} + 3^{n-1}$
	- e. $\lfloor \log_2 n \rfloor$

H

$$
\lim_{n \to \infty} \frac{(n^2+1)^{10}}{n^{20}} = \lim_{n \to \infty} \frac{(n^2+1)^{10}}{(n^2)^{10}} = \lim_{n \to \infty} \left(\frac{n^2+1}{n^2}\right)^{10} = = \lim_{n \to \infty} \left(1 + \frac{1}{n^2}\right)^{10} = 1.
$$

Hence $(n^2+1)^{10} \in \Theta(n^{20}).$

Note: An alternative proof can be based on the binomial formula and the assertion of Exercise 6a.

b. Informally, $\sqrt{10n^2 + 7n + 3} \approx \sqrt{10n^2} = \sqrt{10n} \in \Theta(n)$. Formally,

 $\lim_{n \to \infty} \frac{\sqrt{10n^2 + 7n + 3}}{n} = \lim_{n \to \infty} \sqrt{\frac{10n^2 + 7n + 3}{n^2}} = \lim_{n \to \infty} \sqrt{10 + \frac{7}{n} + \frac{3}{n^2}} = \sqrt{10}.$ Hence $\sqrt{10n^2+7n+3} \in \Theta(n)$.

c. $2n\lg(n+2)^2 + (n+2)^2\lg\frac{n}{2} = 2n2\lg(n+2) + (n+2)^2(\lg n - 1) \in$ $\Theta(n \lg n) + \Theta(n^2 \lg n) = \Theta(n^2 \lg n).$

d. $2^{n+1} + 3^{n-1} = 2^n 2 + 3^n \frac{1}{3} \in \Theta(2^n) + \Theta(3^n) = \Theta(3^n)$.

Prove that it is in increasing order

$$
\log n, \quad n, \quad n \log n, \quad n^2, \quad n^3, \quad 2^n, \quad n!
$$

H

Magic Square

W

Consider an algorithm that proceeds in three steps: initialisation, processing and finalisation, and that these steps take time in $\Theta(n^2)$, $\Theta(n^3)$ and $\Theta(n \log n)$ respectively. It is therefore clear that the complete algorithm takes a time in $\Theta(n^2 + n^3 + n \log n)$. From the maximum rule

$$
\Theta(n^2 + n^3 + n \log n) = \Theta(\max(n^2, n^3 + n \log n))
$$

= $\Theta(\max(n^2, \max(n^3, n \log n)))$
= $\Theta(\max(n^2, n^3))$
= $\Theta(n^3)$

Conditional asymptotic notation

 Many algorithms easier to analyse if initially we restrict our attention to instances whose size satisfies a certain condition, such as a power of 2.

Contd...

More generally, let $f, t: N \to R^{20}$ be two functions from the natural numbers to the nonnegative reals, and let $P: N \rightarrow \{true, false\}$ be a property of the integers. We say that $t(n)$ is in $O(f(n) | P(n))$ if $t(n)$ is bounded above by a positive real multiple of $f(n)$ for all sufficiently large *n* such that $P(n)$ holds. Formally, $O(f(n)|P(n))$ is defined as

$\{t: N \to R^{>0} \mid \exists c \in R^+ \; \exists n_0 \in N \; \forall n \geq n_0 \; (P(n) \Rightarrow t(n) \leq cf(n))\}$

Contd...

The sets $\Omega(f(n) | P(n))$ and $\Theta(f(n) | P(n))$ are defined in a similar way.

Conditional asymptotic notation is more than a mere notational convenience: its main interest is that it can generally be eliminated once it has been used to facilitate the analysis of an algorithm. For this we need a few definitions. A function $f: N \to R^{\geq 0}$ is eventually nondecreasing if there exists an integer threshold n_0 such that $f(n) \le f(n+1)$ for all $n \ge n_0$. This implies by mathematical induction that $f(n) \le f(m)$ whenever $m \ge n \ge$ n_{0} .

Let $b \ge 2$ be any integer. Function f is b-smooth if, in addition to being eventually nondecreasing, it satisfies the condition $f(bn) \in O(f(n))$. In other words, there must exist a constant c (depending on b) such that $f(bn)$ $\leq cf(n)$ for all $n \geq n_0$. A function is *smooth* if it is *b*-smooth for every integer $b > 2$.

