Analysis ofialgorithms 1
ISSUES:

COKrectness

time efficiency.

space efficiency

optimality.

AppProaches:
theoretical analysis
empirical analysis
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Theoretical analysis ofi time efficiency. I

Tume efficiency 1s analyzed by determining the numiber: of
repetitions ofi the hasic operation as a function of: inputsize

Basic operation: the operation that contributes most
towards the running time ofithe algorithm

Input size

T(n) = ¢, C(N)

running time  ayecution time Number of times

for basic operation basic operation is
executed

i

i

il

2-1



i

| §V)

Input size and basic operation example's"

Y
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Problem

Input size measure

Basic operation

Searching for key in a
liIst ofin items

Number of list’s items,
I.e. N

Key comparison

Multiplication of: two
Matrices

Matrix dimensions or:
total number: of elements

Multiplication ofi two

numbers

Checking primality of
a given integer n

n’size = number: of digits
(In binary. representation)

Division

Typical graph problem

#vertices and/or edges

\ISIting & Vertex or
traversing an edge
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Empirical analysis of time efficiency
I11,
Select a specific (typical) sample o Inputs
Use physical unit ofitime (e.g., milliseconds)
or:

Count actual number of basic operation’s executions

Analyze the empirical data
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BEeSt-Case, average-case, WOoKSt-Case T

oK some algorithms efficiency depends on formi of iInput:
\Worst case: G, ,.«(N)— maximum OVer INputs ofisize n
Best case: C, (M) — mMinimum: oVer Inputs ofisize n

Average case: C,  (n)— “average” over inputs of size I
Number: ofitimes the basic operation will'be executed on typical input
NOI the average of:worst and best case

EXxpected number: of basic operations considered as a random variable
under:some assumption about the probability distribution of all
possible Inputs
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Example: Sequential search

- . e : v a
ALGORITHM SequentialSearch(A[0..n — 1], K)
//Searches for a given value in a given array by sequential search
/Input: An array A[0..n — 1] and a search key K
//Output: The index of the first element of A that matches K
/1 or —1 if there are no matching elements
[ <0
while i < and A[i] # K do
i <1+ 1
if i <n return i
else return —1
OISt case
Best case
“wy ' Average case
2-5
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Types of formulas for basic operation’s count
I
Exact formula
e.0., C(n) = n(n-1)/2

Formula indicating order: of: growth With SpPecific
multiplicative constant

e.0., C(n) = 0.5 n?

Formula indicating order: of:growth with unknown
multiplicative constant

e.g., C(n) =cn?
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Order of th
rder: ofigrow e

Most Importants Order: ofigrowth Within a constant multiple
dS N—00

Example:

How much faster will'algorithm: run on computer that Is
twice as fast?

How much longer: does it take to solve problem ofidouble
INpUt size?
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\/alties of:some Important functions as n — <;o”

n |logan n  nlogen n o) 27 n!

10 3.3 10 3.310% 10 10 10 3.6-10°
102 [ 6.6 102 6.6107 104 10° 1.310% 9.3.10%7
10° | 10 10° 1.010¢ 10° 10°

104 13 10 1.310% 108 102

10° 17 10° 1.7.10% 1010 1018

106 | 20 108 20107 102 108

Table 2.1 Values (some approximate) of several functions important
for analysis of algorithms

i

i

iid

2-8



A totiC Orcer: of th
symptotic order: ofigrow Y

rra
A Wway of:comparing functions that ignores constant factors and
small input Sizes

O(a(n)): class of functions f(n) that grow no faster. than g(n)

©(g(n)): class of:functions f(n) that grow at same rate as g(n)

€)(g(n)): class of:functions f(n) that grow at least as fast as g(n)
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Figure 2.1 Big-oh notation: ¢(n) € O(g(n))
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(-notation
DEFINITION A function ¢im) 15 said to be in {g{n)), denoted tin) € A{gin)),

if +{n) 15 bounded above by some constant multiple of g(n) for all large n, Le., if
there exist some positive constant ¢ and some nonnegative integer ny such that

rin) = cgin) foralln = ng.
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Big-0mega
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Fig. 2.2 Big-omega notation: #(n) € 2(g(n))

0

2-12



i

i

idd

2-notation
DEFINITION A function t{n) 15 said to be in £2{g{n)), denoted r{n) € 2i{gim)), if

tim) i1s bounded below by some positive constant multiple of gin) for all large n,
L., if there exist some positive constant ¢ and some nonnegative integer ng such
that

t{n) > cgin) forall n = np.
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Big-theta

doesn't
matter

Figure 2.3 Big-theta notation: t(n) € &(g(n))
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=-notation
DEFINITION A function f{n) 15 said to be in @{g(n)), denoted t(n) & B(gin)),

if +in) 15 bounded both above and below by some positive constant multiples of
gin) for all large n, Le., if there exist some positive constants ¢ and 7 and some
nonnegative integer ng such that

cagin) = tin) < opeln)  for all n = ny.
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Establishing order of:growth using the definition
I,
Definition: f(n)s in O(g(n)) It order of:growth ofi f(n) < order
ofigrowth of: g(n) (Withiniconstant multiple),

I.€., there exist positive constant ¢ and non-negative Integer
N, such that

f(n)'s ¢ g(n) forevery n 2n;

Examples:
10n 15 O(n?)

5n+201Ss O(n)
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SOME PrOPEFtIES Of asymptotic Order of growth

rrr

rrau

f(n) e O(i(n))
i(n)re O(g(nm)) 11T g(n) eQ(t(n))

IT:1:(n) € O(g(n)) and g(n) e O(h(n)), then f(n) e O(h(n))

Note similarity withra s b

11, (n) € O(g.(n))and f5(n) e O(ag,(n)) , then
f1(n) +15(n) € O(max{g,(n); 9,(n)})
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Example 1.11 The function 3n +2 = O(n) as 3n + 2 < 4n for all n > 2.
In+3 =0(n) as3n+3 < 4n for alln > 3. 100n+6 = O(n) as
100n +6 < 101n for all n > 6. 10n?>+4n+2 = O(n?) as 10n® +4n+2 < 11n?
for all n > 5. 1000n? +100n — 6 = O(n?) as 1000n? + 100n — 6 < 1001n? for

n > 100. 6x2"+n? =0(2%) as 6x2" +n? < 7x2" forn > 4. In+3 = O(n?)
as 31 + 3 < 3n? for n > 2. 10n? + 4n + 2 = O(n?) as 10n? + 4n + 2 < 10n?
for n > 2. 3n+ 2 # O(1) as 3n + 2 is not less than or equal to ¢ for any
constant ¢ and all n > ng. 10n? +4n +2 # O(n). O
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Example 1.12 The function 3n +2 = 2(n) as 3n+2 > 3n forn > 1
(the inequality holds for n > 0, but the definition of € requires an ng > 0).
In+3=Q(n)as3In+3 >3nforn>1. 100n+6 = Q(n) as 100n+6 > 100n
for n > 1. 10n° +4n +2 = Q(n?) as 10n®> +4n +2 > n? for n > 1.

62" +n? = Q(2") as 6 % 2" + n? > 2" for n > 1. Observe also that
3n+3=Q(1), 10n? + 4n+ 2 = Q(n), 10n? +4n + 2 = Q(1), 6 x 2" + n? =
Q(n1%), 6% 2" + n? = Q(n°"?), 62" 4+ n? = Q(n?), 6% 2" +n* = Q(n), and
6+ 2" +n? = Q(1). O
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Example 1.13 The function 3n +2 = O(n) as 3n +2 > 3n for all n > 2
and 3n + 2 < 4n for all n > 2, so cl =3, co=4,andng=2. 3In+3 =0O(r

),
10n? +4n + 2 = O(n?), 6 « oM 4 2 = (2", and 10 logn + 4 = O(logn).
3n+2# 0(1), 3n+3 £ 0(n?), 10?7, +4n+2 # O(n), 10n? +4n+2 # 6(1)
6% 2" +n? £ O(n?), 62" + n? # O(n'%), and 6 x 2" + n? £ O(1). O
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OMPAKISeNS

131,072
65,536
32,768
16,384

8,192
4,096
2,048
1,024

512

Figure 1.3 @ Growth rates of some common complexity functions.
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3lgn+ 8
5n+7

2nign

4n?
6n°+9

5n° + 2n
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4n2

6n2+ 9

5n+2n

r'rr
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Establishing order ofi growth using [imits
r'rr

0 order of growth of T(n) < order of growth of g(n)

lim T(n)/g(n) = c >0 order of growth of T(n) = order of growth of g(n)
1—00
oo order of growth of T(n) > order of growth of g(n)
Examples:
10N VS. n?
e N(N+1)/2 VS. n?
-
.
- m 2-25
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I’Hopital’s rule and Stirling’s formula

rrr

rrau
I’Hopital’s rule: If lim_f(n) = lim,__0g(n) =oc and
the derivatives I, g exist, then

im Wiy ()

nseo  g(n) nseo 9 (N)
Example: logn vs. n

Stirling’s formula: n! = (27wn)Y2 (n/e)"
Examples 27 vs. n!
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Orders ofigrowth of:some important functions
172
All-logarithmic functions log, n belong to the same class
O(log n) no matter what the logarithm’s base a > 1 IS

All'polynomials of the same degree k belong to the same class:
ank+a N+, a, e Oy

Exponential functions a* have different orders of growth for
different a’s

order logn < order n? (a>0) <ordera’ < ordern! < order n”
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Definition 1.7 [Little “oh"] The function f(n) =
is little oh of g of n”) iff

f)

im

n—r00 g(ﬂ,)

Definition 1.8 [Little omega] The function f(n)
n is little omega of g of n”) iff

lim 9(n)

o(g(n)) (read as “f of n

= w(g(n)) (read as “f of
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Basic asymptotic efficiency Classes

I
1 constant
log N logarithmic
n linear
nlogn n-log-n
n? guadratic
ne cubic
2" exponential
ni factorial
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EXAMPLE 1 Compare the orders of growth of -im (m — 1) and " (This i1s one of
the examples we used at the beginning of this section to illustrate the defimtions.)

-

n-—n 1 . 1

"_Ir.l':l n—1)

. 1 1
lim — =73, lim — =— |lim “__':I=E'

n—+og = —- n- E rR—05 n
Since the limit is equal to a positive constant, the functions have the same order

of growth or, symbolically, -_}n (n —1) e B(n?). ]
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EXAMPLE 2 Compare the orders of growth of log; n and /. (Unlike Exam-
ple 1, the answer here is not immediately obvious.)

(loga n)’
— = li

n—0 1' .,.."IFT: ! n—+00

Since the limit 1s equal to zero, log; n has a smaller order of growth than ./n. (Since
|'|:|I'l_-| K

lim =10, we can use the so-called little-oh notation: log; n € o(/n).

m—Ce
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EXAMPLE 3 Compare the orders of growth of a! and 27, (We discussed this
informally in Section 2.1.) Taking advantage of Stirling’s formula, we get

e sm 1Al )
! v2mn (2) — " ( n "

- . L T o - ¥
Iim — = lim = lim +2xn— = lim +Zmn

—_— = O,
r—= L11 n—=00 EJ:I n— 0 L._.lll E'E R—i00 ¥ }

vy
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Check the assertions?

a nin+ 12 n®) b onin+£1)/2e Oind)

e nin+ 13228y d. nin+1)/2 e Qin)
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a. n(n+1)/2 € O(n?) is true.

c. n(n+1)/2 € ©(n?) is false.

b. n(n+1)/:

d. n(n+1)/:

(n?) is true.

Qn) is true.
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3. For each of the following functions, indicate the class ©(g(n)) the function
belongs to. (Use the simplest g(n) possible in your answers.) Prove your
assertions.

a. (n? + 1)1 b. VIORZ+ tn+ 3

c. 2nlg(n+2)*+ (n+2)%1g% d. 2n+t 4 3n-l

*

e. [logyn|
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. i n 2 1 3 10l .
11111 = .]::_gu j = 11111
n—oo —roo

(n*+1)" . p? e {14 110
(n)tt0 “11_1,1; . ons T r}]_lﬁl; (1 + n- )

Hence (n? + 1)1 € ©(n?°).

Note: An alternative proof can be based on the binomial formula and
the assertion of Exercise 6a.

b. Informally, v10n2 + Tn + 3 ~ V10n2? = v/10n € O(n). Formally,

= lim -v/lﬂ + %—I— 3 — yﬁT)

N— 00 n

Hence v10n? + Tn + 3 € O(n).
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c. 2n lg(ﬂ.- + 2)2 + ('.?1. -+ 2}3 ]g %‘ = M2 lg(ﬂ, + 2} + (_'.?1- 1+ z)z(lg n 1} c
O(nlgn) + B(n*lgn) = B(n*lgn).

L

d. 2nt1 4 31 = 9ng 4 3n

L

6(2") +6(3") = O(3").

»
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Prove that It IS In InCreasing order

logn, n, nlogn,
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Maxamum Rule

Consider an algorithm that proceeds in three steps: initialisation.
processing and finalisation, and that these steps take time in om’). om’)
and ©O(nlogn) respectively. It 1z therefore clear that the complete
algorithm takes a time in ©(n” +n” +nlogn). From the maximum rule

O(n” +n° +nlogn) = O(max(n-.n’ + nlogn))
— O(max(n”.max(n’,nlogn)))
— O(max(n-.n"))
- 0(n’)

idd
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Conditionallasymptotic notation
1.
Many algorithms easier: to analyse it initially we restrict our

attention to instances Whose size satisfies a certain
condition, such as a power: of 2.
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Contd...

More generally, let f.1:N =R be two functions from the natural

numbers to the nonnegative reals, and let P:N = {true, false} be a property
of the integers, We say that #(n)1sm O(f(n)! P(n)) if t(n) 13 hounded above
by a positive real multiple of f(n) for all sufficiently large n such that P(n)
holds. Formally, O(f(n)IP(n)) 15 defined as
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Contd...

The sets Q(f(n) |P(n)) and ©(f(n) | P(n)) are defined in a similar way.

Conditional asymptotic notation 15 more than a mere notational
convenience: 1ts main interest is that it can generally be eliminated once
it has been used to facilitate the analysis of an algorithm. For this we
need a few definitions. A function f:N — R is eventually nondecreasing

if there exists an integer threshold n, such that f(n) < f(n+1) for all n=n,.

This implies by mathematical induction that f(n) < f(m) whenever m = n =
n

I:I "
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Contd...

Let b = 2 be any integer. Function fis b-smooth if, in addition to being
eventually nondecreasing, it satisfies the condition f(bn)E O(f(n)). In

other words, there must exist a constant ¢ (depending on b) such that f(bn)
< cf(n) for all n =n,. A function is smooth if it 1s b-smooth for every integer

b"'_':- )
=7 i
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