
2-0

Analysis of algorithms

 Issues:

• correctness

• time efficiency

• space efficiency

• optimality

 Approaches:

• theoretical analysis

• empirical analysis

2-1

Theoretical analysis of time efficiency

Time efficiency is analyzed by determining the number of

repetitions of the basic operation as a function of input size

 Basic operation: the operation that contributes most

towards the running time of the algorithm

T(n) ≈ copC(n)

running time execution time

for basic operation

Number of times

basic operation is

executed

input size

2-2

Input size and basic operation examples

Problem Input size measure Basic operation

Searching for key in a

list of n items

Number of list’s items,

i.e. n
Key comparison

Multiplication of two

matrices

Matrix dimensions or

total number of elements

Multiplication of two

numbers

Checking primality of

a given integer n

n’size = number of digits

(in binary representation)
Division

Typical graph problem #vertices and/or edges
Visiting a vertex or

traversing an edge

2-3

Empirical analysis of time efficiency

 Select a specific (typical) sample of inputs

 Use physical unit of time (e.g., milliseconds)

or

Count actual number of basic operation’s executions

 Analyze the empirical data

2-4

Best-case, average-case, worst-case

For some algorithms efficiency depends on form of input:

 Worst case: Cworst(n) – maximum over inputs of size n

 Best case: Cbest(n) – minimum over inputs of size n

 Average case: Cavg(n) – “average” over inputs of size n

• Number of times the basic operation will be executed on typical input

• NOT the average of worst and best case

• Expected number of basic operations considered as a random variable

under some assumption about the probability distribution of all

possible inputs

2-5

Example: Sequential search

 Worst case

 Best case

 Average case

2-6

Types of formulas for basic operation’s count

 Exact formula

e.g., C(n) = n(n-1)/2

 Formula indicating order of growth with specific

multiplicative constant

e.g., C(n) ≈ 0.5 n2

 Formula indicating order of growth with unknown

multiplicative constant

e.g., C(n) ≈ cn2

2-7

Order of growth

 Most important: Order of growth within a constant multiple

as n→∞

 Example:

• How much faster will algorithm run on computer that is

twice as fast?

• How much longer does it take to solve problem of double

input size?

2-8

Values of some important functions as n 

2-9

Asymptotic order of growth

A way of comparing functions that ignores constant factors and

small input sizes

 O(g(n)): class of functions f(n) that grow no faster than g(n)

 Θ(g(n)): class of functions f(n) that grow at same rate as g(n)

 Ω(g(n)): class of functions f(n) that grow at least as fast as g(n)

2-10

Big-oh

2-11

2-12

Big-omega

2-13

2-14

Big-theta

2-15

2-16

Establishing order of growth using the definition

Definition: f(n) is in O(g(n)) if order of growth of f(n) ≤ order

of growth of g(n) (within constant multiple),

i.e., there exist positive constant c and non-negative integer

n0 such that

f(n) ≤ c g(n) for every n ≥ n0

Examples:

 10n is O(n2)

 5n+20 is O(n)

2-17

Some properties of asymptotic order of growth

 f(n)  O(f(n))

 f(n)  O(g(n)) iff g(n) (f(n))

 If f (n)  O(g (n)) and g(n)  O(h(n)) , then f(n)  O(h(n))

Note similarity with a ≤ b

 If f1(n)  O(g1(n)) and f2(n)  O(g2(n)) , then

f1(n) + f2(n)  O(max{g1(n), g2(n)})

2-18

2-19

2-20

2-21

Comparisons

2-22

2-23

2-24

2-25

Establishing order of growth using limits

lim T(n)/g(n) =

0 order of growth of T(n) < order of growth of g(n)

c > 0 order of growth of T(n) = order of growth of g(n)

∞ order of growth of T(n) > order of growth of g(n)

Examples:

• 10n vs. n2

• n(n+1)/2 vs. n2

n→∞

2-26

L’Hôpital’s rule and Stirling’s formula

L’Hôpital’s rule: If limn f(n) = limng(n) =  and

the derivatives f´, g´ exist, then

Stirling’s formula: n!  (2n)1/2 (n/e)n

f(n)

g(n)
lim
n

=
f ´(n)

g ´(n)
lim
n

Example: log n vs. n

Example: 2n vs. n!

2-27

Orders of growth of some important functions

 All logarithmic functions loga n belong to the same class
(log n) no matter what the logarithm’s base a > 1 is

 All polynomials of the same degree k belong to the same class:
akn

k + ak-1n
k-1 + … + a0  (nk)

 Exponential functions an have different orders of growth for
different a’s

 order log n < order n (>0) < order an < order n! < order nn

2-28

2-29

Basic asymptotic efficiency classes

1 constant

log n logarithmic

n linear

n log n n-log-n

n2 quadratic

n3 cubic

2n exponential

n! factorial

2-30

2-31

2-32

2-33

Check the assertions?

2-34

2-35

2-36

2-37

2-38

Prove that it is in increasing order

2-39

Magic Square

2-40

Maximum Rule

2-41

Conditional asymptotic notation

 Many algorithms easier to analyse if initially we restrict our

attention to instances whose size satisfies a certain

condition, such as a power of 2.

2-42

Contd…

2-43

Contd…

2-44

Contd…

2-45

Contd…

