Analysis of algorithms

& Issues:

- correctness
- time efficiency
- space efficiency
- optimality

& Approaches:

- theoretical analysis
- empirical analysis

Theoretical analysis of time efficiency

Time efficiency is analyzed by determining the number of repetitions of the *basic operation* as a function of *input size*

Q <u>Basic operation</u>: the operation that contributes most towards the running time of the algorithm

input size

running time

execution time for basic operation Number of times basic operation is executed

Input size and basic operation examples

Problem	Input size measure	Basic operation
Searching for key in a list of <i>n</i> items	Number of list's items, i.e. <i>n</i>	Key comparison
Multiplication of two matrices	Matrix dimensions or total number of elements	Multiplication of two numbers
Checking primality of a given integer <i>n</i>	<i>n</i> 'size = number of digits (in binary representation)	Division
Typical graph problem	#vertices and/or edges	Visiting a vertex or traversing an edge

Empirical analysis of time efficiency

& Select a specific (typical) sample of inputs

- **Q** Use physical unit of time (e.g., milliseconds) or
 Count actual number of basic operation's executions
- **&** Analyze the empirical data

Best-case, average-case, worst-case

For some algorithms efficiency depends on form of input:

Q Worst case: $C_{worst}(n) - maximum$ over inputs of size n

Q Best case: $C_{\text{best}}(n) - \text{minimum over inputs of size } n$

A verage case: $C_{avg}(n) - average$ over inputs of size *n*

- Number of times the basic operation will be executed on typical input
- NOT the average of worst and best case
- Expected number of basic operations considered as a random variable under some assumption about the probability distribution of all possible inputs

Example: Sequential search

```
ALGORITHM SequentialSearch(A[0..n-1], K)
```

```
//Searches for a given value in a given array by sequential search
//Input: An array A[0..n - 1] and a search key K
//Output: The index of the first element of A that matches K
// or -1 if there are no matching elements
i ← 0
while i < n and A[i] ≠ K do
i ← i + 1
if i < n return i
else return -1
```

& Worst case

& Best case

Types of formulas for basic operation's count

Q Exact formula e.g., C(n) = n(n-1)/2

Q Formula indicating order of growth with specific multiplicative constant
 e.g., C(n) ≈ 0.5 n²

Q Formula indicating order of growth with unknown multiplicative constant
 e.g., C(n) ≈ cn²

Order of growth

Q Most important: Order of growth within a constant multiple as $n \rightarrow \infty$

& Example:

• How much faster will algorithm run on computer that is twice as fast?

• How much longer does it take to solve problem of double input size?

Values of some important functions as $n \rightarrow \infty$

n	$\log_2 n$	n	$n\log_2 n$	n^2	n^3	2^n	n!
10	3.3	101	$3.3 \cdot 10^{1}$	10^{2}	10^{3}	10^{3}	$3.6{\cdot}10^{6}$
10^{2}	6.6	10^{2}	$6.6 \cdot 10^{2}$	10^{4}	10^{6}	$1.3 \cdot 10^{30}$	$9.3 \cdot 10^{157}$
10^{3}	10	10^{3}	$1.0 \cdot 10^4$	10^{6}	10^{9}		
10^{4}	13	10^{4}	$1.3 \cdot 10^{5}$	10^{8}	10^{12}		
10^{5}	17	10^{5}	$1.7 \cdot 10^{6}$	1010	10^{15}		
10^{6}	20	10^{6}	$2.0{\cdot}10^7$	10^{12}	10^{18}		

Table 2.1Values (some approximate) of several functions importantfor analysis of algorithms

Asymptotic order of growth

A way of comparing functions that ignores constant factors and small input sizes

Q O(g(n)): class of functions f(n) that grow <u>no faster</u> than g(n)

Q $\Theta(g(n))$: class of functions f(n) that grow <u>at same rate</u> as g(n)

Q $\Omega(g(n))$: class of functions f(n) that grow at least as fast as g(n)

O-notation

DEFINITION A function t(n) is said to be in O(g(n)), denoted $t(n) \in O(g(n))$, if t(n) is bounded above by some constant multiple of g(n) for all large n, i.e., if there exist some positive constant c and some nonnegative integer n_0 such that

 $t(n) \le cg(n)$ for all $n \ge n_0$.

Ω-notation

DEFINITION A function t(n) is said to be in $\Omega(g(n))$, denoted $t(n) \in \Omega(g(n))$, if t(n) is bounded below by some positive constant multiple of g(n) for all large n, i.e., if there exist some positive constant c and some nonnegative integer n_0 such that

 $t(n) \ge cg(n)$ for all $n \ge n_0$.

Big-theta

⊖-notation

DEFINITION A function t(n) is said to be in $\Theta(g(n))$, denoted $t(n) \in \Theta(g(n))$, if t(n) is bounded both above and below by some positive constant multiples of g(n) for all large n, i.e., if there exist some positive constants c_1 and c_2 and some nonnegative integer n_0 such that

 $c_2g(n) \le t(n) \le c_1g(n)$ for all $n \ge n_0$.

Establishing order of growth using the definition

Definition: f(n) is in O(g(n)) if order of growth of f(n) ≤ order
 of growth of g(n) (within constant multiple),
 i.e., there exist positive constant c and non-negative integer
 n₀ such that

 $f(n) \leq c g(n)$ for every $n \geq n_0$

Examples: 0 10n is $O(n^2)$

a 5n+20 is O(n)

Some properties of asymptotic order of growth $\delta f(n) \in O(f(n))$ ∫ f(n) ∈ O(g(n)) iff g(n) ∈ Ω(f(n))**a** If $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$, then $f(n) \in O(h(n))$ Note similarity with $a \leq b$ **a** If $f_1(n) \in O(g_1(n))$ and $f_2(n) \in O(g_2(n))$, then $f_1(n) + f_2(n) \in O(\max\{g_1(n), g_2(n)\})$

///.

Example 1.11 The function 3n + 2 = O(n) as $3n + 2 \le 4n$ for all $n \ge 2$. 3n + 3 = O(n) as $3n + 3 \le 4n$ for all $n \ge 3$. 100n + 6 = O(n) as $100n + 6 \le 101n$ for all $n \ge 6$. $10n^2 + 4n + 2 = O(n^2)$ as $10n^2 + 4n + 2 \le 11n^2$ for all $n \ge 5$. $1000n^2 + 100n - 6 = O(n^2)$ as $1000n^2 + 100n - 6 \le 1001n^2$ for $n \ge 100$. $6 * 2^n + n^2 = O(2^n)$ as $6 * 2^n + n^2 \le 7 * 2^n$ for $n \ge 4$. $3n + 3 = O(n^2)$ as $3n + 3 \le 3n^2$ for $n \ge 2$. $10n^2 + 4n + 2 = O(n^4)$ as $10n^2 + 4n + 2 \le 10n^4$ for $n \ge 2$. $3n + 2 \ne O(1)$ as 3n + 2 is not less than or equal to c for any constant c and all $n \ge n_0$. $10n^2 + 4n + 2 \ne O(n)$.

Example 1.12 The function $3n + 2 = \Omega(n)$ as $3n + 2 \ge 3n$ for $n \ge 1$ (the inequality holds for $n \ge 0$, but the definition of Ω requires an $n_0 > 0$). $3n + 3 = \Omega(n)$ as $3n + 3 \ge 3n$ for $n \ge 1$. $100n + 6 = \Omega(n)$ as $100n + 6 \ge 100n$ for $n \ge 1$. $10n^2 + 4n + 2 = \Omega(n^2)$ as $10n^2 + 4n + 2 \ge n^2$ for $n \ge 1$. $6 * 2^n + n^2 = \Omega(2^n)$ as $6 * 2^n + n^2 \ge 2^n$ for $n \ge 1$. Observe also that $3n + 3 = \Omega(1), 10n^2 + 4n + 2 = \Omega(n), 10n^2 + 4n + 2 = \Omega(1), 6 * 2^n + n^2 = \Omega(n^{100}), 6 * 2^n + n^2 = \Omega(n^{50.2}), 6 * 2^n + n^2 = \Omega(n^2), 6 * 2^n + n^2 = \Omega(n), and <math>6 * 2^n + n^2 = \Omega(1)$.

Example 1.13 The function $3n + 2 = \Theta(n)$ as $3n + 2 \ge 3n$ for all $n \ge 2$ and $3n + 2 \le 4n$ for all $n \ge 2$, so $c_1 = 3$, $c_2 = 4$, and $n_0 = 2$. $3n + 3 = \Theta(n)$, $10n^2 + 4n + 2 = \Theta(n^2)$, $6 * 2^n + n^2 = \Theta(2^n)$, and $10 * \log n + 4 = \Theta(\log n)$. $3n + 2 \ne \Theta(1)$, $3n + 3 \ne \Theta(n^2)$, $10n^2 + 4n + 2 \ne \Theta(n)$, $10n^2 + 4n + 2 \ne \Theta(1)$, $6 * 2^n + n^2 \ne \Theta(n^2)$, $6 * 2^n + n^2 \ne \Theta(n^{100})$, and $6 * 2^n + n^2 \ne \Theta(1)$. \Box

Comparisons

Establishing order of growth using limits

 n^2

 n^2

0 order of growth of T(n) < order of growth of g(n)

c > 0 order of growth of T(n) = order of growth of g(n)

 ∞ order of growth of T(n) > order of growth of g(n)

• 10*n* vs.

• n(n+1)/2 vs.

L'Hôpital's rule and Stirling's formula

L'Hôpital's rule: If $\lim_{n\to\infty} f(n) = \lim_{n\to\infty} g(n) = \infty$ and the derivatives f', g' exist, then

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{f'(n)}{g'(n)}$$

Example: log n vs. n

Stirling's formula: $n! \approx (2\pi n)^{1/2} (n/e)^n$ Example: 2^n vs. n!

Orders of growth of some important functions

- **Q** All logarithmic functions $\log_a n$ belong to the same class $\Theta(\log n)$ no matter what the logarithm's base a > 1 is
- **a** All polynomials of the same degree k belong to the same class: $a_k n^k + a_{k-1} n^{k-1} + \ldots + a_0 \in \Theta(n^k)$
- A Exponential functions aⁿ have different orders of growth for different a's

a order $\log n < \operatorname{order} n^{\alpha}$ ($\alpha > 0$) $< \operatorname{order} a^{n} < \operatorname{order} n! < \operatorname{order} n^{n}$

Definition 1.7 [Little "oh"] The function f(n) = o(g(n)) (read as "f of n is little oh of g of n") iff

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

Definition 1.8 [Little omega] The function $f(n) = \omega(g(n))$ (read as "f of n is little omega of g of n") iff

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = 0$$

Basic asymptotic efficiency classes

1	constant
log n	logarithmic
n	linear
n log n	<i>n</i> -log- <i>n</i>
n^2	quadratic
<i>n</i> ³	cubic
2 ⁿ	exponential
<i>n</i> !	factorial

EXAMPLE 1 Compare the orders of growth of $\frac{1}{2}n(n-1)$ and n^2 . (This is one of the examples we used at the beginning of this section to illustrate the definitions.)

$$\lim_{n \to \infty} \frac{\frac{1}{2}n(n-1)}{n^2} = \frac{1}{2} \lim_{n \to \infty} \frac{n^2 - n}{n^2} = \frac{1}{2} \lim_{n \to \infty} (1 - \frac{1}{n}) = \frac{1}{2}.$$

Since the limit is equal to a positive constant, the functions have the same order of growth or, symbolically, $\frac{1}{2}n(n-1) \in \Theta(n^2)$.

EXAMPLE 2 Compare the orders of growth of $\log_2 n$ and \sqrt{n} . (Unlike Example 1, the answer here is not immediately obvious.)

$$\lim_{n \to \infty} \frac{\log_2 n}{\sqrt{n}} = \lim_{n \to \infty} \frac{(\log_2 n)'}{(\sqrt{n})'} = \lim_{n \to \infty} \frac{(\log_2 e) \frac{1}{n}}{\frac{1}{2\sqrt{n}}} = 2\log_2 e \lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0.$$

Since the limit is equal to zero, $\log_2 n$ has a smaller order of growth than \sqrt{n} . (Since $\lim_{n\to\infty} \frac{\log_2 n}{\sqrt{n}} = 0$, we can use the so-called *little-oh notation*: $\log_2 n \in o(\sqrt{n})$.

EXAMPLE 3 Compare the orders of growth of n! and 2ⁿ. (We discussed this informally in Section 2.1.) Taking advantage of Stirling's formula, we get

$$\lim_{n \to \infty} \frac{n!}{2^n} = \lim_{n \to \infty} \frac{\sqrt{2\pi n} \left(\frac{n}{e}\right)^n}{2^n} = \lim_{n \to \infty} \sqrt{2\pi n} \frac{n^n}{2^n e^n} = \lim_{n \to \infty} \sqrt{2\pi n} \left(\frac{n}{2e}\right)^n = \infty.$$

Check the assertions?

a. $n(n+1)/2 \in O(n^3)$ is true.

b.
$$n(n+1)/2 \in O(n^2)$$
 is true.

c. $n(n+1)/2 \in \Theta(n^3)$ is false. d. $n(n+1)/2 \in \Omega(n)$ is true.

3. For each of the following functions, indicate the class $\Theta(g(n))$ the function belongs to. (Use the simplest g(n) possible in your answers.) Prove your assertions. a. $(n^2 + 1)^{10}$ b. $\sqrt{10n^2 + 7n + 3}$ c. $2n \lg(n+2)^2 + (n+2)^2 \lg \frac{n}{2}$ d. $2^{n+1} + 3^{n-1}$ e. $\lfloor \log_2 n \rfloor$

$$\lim_{n \to \infty} \frac{(n^2 + 1)^{10}}{n^{20}} = \lim_{n \to \infty} \frac{(n^2 + 1)^{10}}{(n^2)^{10}} = \lim_{n \to \infty} \left(\frac{n^2 + 1}{n^2}\right)^{10} = \lim_{n \to \infty} \left(1 + \frac{1}{n^2}\right)^{10} = 1.$$

Hence $(n^2 + 1)^{10} \in \Theta(n^{20}).$

Note: An alternative proof can be based on the binomial formula and the assertion of Exercise 6a.

b. Informally, $\sqrt{10n^2 + 7n + 3} \approx \sqrt{10n^2} = \sqrt{10}n \in \Theta(n)$. Formally,

$$\lim_{n \to \infty} \frac{\sqrt{10n^2 + 7n + 3}}{n} = \lim_{n \to \infty} \sqrt{\frac{10n^2 + 7n + 3}{n^2}} = \lim_{n \to \infty} \sqrt{10 + \frac{7}{n} + \frac{3}{n^2}} = \sqrt{10}.$$

Hence $\sqrt{10n^2 + 7n + 3} \in \Theta(n).$

c. $2n \lg(n+2)^2 + (n+2)^2 \lg \frac{n}{2} = 2n2 \lg(n+2) + (n+2)^2 (\lg n-1) \in \Theta(n \lg n) + \Theta(n^2 \lg n) = \Theta(n^2 \lg n).$

d. $2^{n+1} + 3^{n-1} = 2^n 2 + 3^n \frac{1}{3} \in \Theta(2^n) + \Theta(3^n) = \Theta(3^n).$

Prove that it is in increasing order

$$\log n$$
, n , $n \log n$, n^2 , n^3 , 2^n , $n!$

Magic Square

15	8	1	24	17
16	14	7	5	23
22	20	13	6	4
3	21	19	12	10
9	2	25	18	11

Consider an algorithm that proceeds in three steps: initialisation, processing and finalisation, and that these steps take time in $\Theta(n^2)$, $\Theta(n^3)$ and $\Theta(n \log n)$ respectively. It is therefore clear that the complete algorithm takes a time in $\Theta(n^2 + n^3 + n \log n)$. From the maximum rule

$$\Theta(n^2 + n^3 + n \log n) = \Theta(\max(n^2, n^3 + n \log n))$$

= $\Theta(\max(n^2, \max(n^3, n \log n)))$
= $\Theta(\max(n^2, n^3))$
= $\Theta(n^3)$

Conditional asymptotic notation

A Many algorithms easier to analyse if initially we restrict our attention to instances whose size satisfies a certain condition, such as a power of 2.

Contd...

More generally, let $f,t: N \to R^{\geq 0}$ be two functions from the natural numbers to the nonnegative reals, and let $P: N \to \{true, false\}$ be a property of the integers. We say that t(n) is in O(f(n) | P(n)) if t(n) is bounded above by a positive real multiple of f(n) for all sufficiently large n such that P(n) holds. Formally, O(f(n) | P(n)) is defined as

Contd...

The sets $\Omega(f(n) | P(n))$ and $\Theta(f(n) | P(n))$ are defined in a similar way.

Conditional asymptotic notation is more than a mere notational convenience: its main interest is that it can generally be eliminated once it has been used to facilitate the analysis of an algorithm. For this we need a few definitions. A function $f: N \to R^{\geq 0}$ is eventually nondecreasing if there exists an integer threshold n_0 such that $f(n) \leq f(n+1)$ for all $n \geq n_0$. This implies by mathematical induction that $f(n) \leq f(m)$ whenever $m \geq n \geq n_0$.

Let $b \ge 2$ be any integer. Function f is b-smooth if, in addition to being eventually nondecreasing, it satisfies the condition $f(bn) \in O(f(n))$. In other words, there must exist a constant c (depending on b) such that $f(bn) \le cf(n)$ for all $n \ge n_0$. A function is smooth if it is b-smooth for every integer $b \ge 2$.